Beschreibung des Bildes Beschreibung des Bildes
Für Browser ohne JavaScript finden Sie hier eine Liste der Quick Links
Home » Design1, Variante1

 

Oberseminar Numerische Mathematik / Scientific Computing

 

Michael Griebel

Universität Bonn

A Sparse Grid Space-Time Discretization Scheme for Parabolic Problems

Abstract:

We consider the discretization in space and time of parabolic differential equations where we use the so-called space-time sparse grid technique. It employs the tensor product of a one-dimensional multilevel basis in time and a proper multilevel basis in space. This way, the additional order of complexity of a direct space-time discretization can be avoided, provided that the solution fulfills a certain smoothness assumption in space-time, namely that its mixed space-time derivatives are bounded. This holds in many applications due to the smoothing properties of the propagator of the parabolic PDE (heat kernel). In the more general case, the space-time sparse grid approach can be employed together with adaptive refinement in space and time and then leads to similar approximation rates as the non-adaptive method for smooth functions. We analyze the properties of different space-time sparse grid discretizations for parabolic differential equations from both, the theoretical and practical point of view, discuss their implementational aspects and report on the results of numerical experiments.

 

Datum: 19.11.07
Zeit:14:15 Uhr
Ort:FU Berlin, Institut für Mathematik, Arnimallee 6, 14195 Berlin.
Raum:032 im Erdgeschoss

News

Titel der Neuigkeit

Kurze Zusammenfassung
Datumsangabe
© 2007 Freie Universität Berlin Feedback | 05.01.2012