7. Übung zur Vorlesung Computerorientierte Mathematik II

Sommersemester 2011

C. Hartmann, S. Winkelmann

Abgabe bis Mittwoch, 15. Juni, 14.00 Uhr

Aufgabe 1 (Anfangswertprobleme, 6 Punkte)

Zu einer gegebene Funktion $f: [0, \infty) \times \mathbf{R} \to \mathbf{R}, (t, x) \mapsto f(t, x)$ werde eine Funktion $x: [0, \infty) \to \mathbf{R}, t \mapsto x(t)$ mit der Eigenschaft

$$\frac{dx}{dt} = f(t, x), \quad x(t_0) = x_0$$

gesucht. Bestimmen sie x für

- $f \equiv 0$,
- $f = \lambda x$ mit einem beliebigen $\lambda \in \mathbf{R}$,
- $f = \phi(t)$ für eine beschränkte und integrable Funktion ϕ .

Aufgabe 2 (Reaktionskinetik, 5 Punkte)

Wir betrachten zwei gleichzeitig ablaufende Reaktionen

$$A \to B \quad B \to A$$

zweier Gase in einem Behälter mit konstantem Volumen V. Immer, wenn zwei A-Teilchen zusammenstoßen, reagiert eines davon zu einem B-Teilchen, immer, wenn zwei B-Teilchen zusammenstoßen, reagiert eines davon zu einem A-Teilchen. Die Reaktionsrate sei k(p,T), wobei wir den Druck p und die Temperatur T als konstant annehmen wollen. Ferner nehmen wir an dass die Teilchen zu jedem Zeitpunkt gleichmäßig in dem Behälter verteilt sind (Durchmischungshypothese).

- 1. Leiten Sie ein Anfangswertproblem her, das für gegebene Startwerte $\eta_A(0)$, $\eta_B(0)$ die Anzahl der A- und B-Teilchen, $\eta_A(t)$, $\eta_B(t)$, zum Zeitpunkt t>0 beschreibt.
- 2. Gibt es $station\"{a}re\ Zust\"{a}nde$, d.h. Anfangswerte, für die die Lösung konstant bleibt?

Hinweis: Machen Sie die Annahme, dass die Anzahl der Zusammenstöße zweier Teilchen vom Typ S in einem kleinen Zeitintervall Δt proportional zum Produkt der Anzahl η_S der Teilchen und der Länge des Zeitintervalls ist, d.h. #Zusammenstöße= $k(p,T)\eta_S(t)\Delta t$.

Aufgabe 3 (Impliziter Euler, 5 Punkte)

Es seien x_k und \tilde{x}_k die mit dem impliziten Euler-Verfahren berechneten Näherungslösungen der Differentialgleichung

$$x'(t) = \lambda x(t), \qquad 0 < t \le T$$

für ein reelles $\lambda > 0$ und die Anfangswerte x_0 bzw. \tilde{x}_0 . Zeigen Sie, dass unter der Schrittweitenbeschränkung $\tau < 1/\lambda$ folgende Abschätzung für die diskrete Kondition des impliziten Euler-Verfahrens gilt:

$$|x_k - \tilde{x}_k| \le \exp\left(\frac{T\lambda}{1 - \tau\lambda}\right) |x_0 - \tilde{x}_0|.$$