Probeklausur zur Vorlesung Computerorientierte Mathematik II

Sommersemester 2011

C. Hartmann, S. Winkelmann

Aufgabe 1 (Interpolation, 3+2 Punkte)

a) Berechnen Sie das Interpolationspolynom p_2 zu den Daten

k	0	1	2
x_k	-1	0	2
f_k	-2	1	4

einmal mit der Newtonschen Interpolationsformel und einmal mit dividierten Differenzen. Bringen Sie Ihre Lösungen in die Form $p_2(x) = c_2x^2 + c_1x + c_0$ mit Koeffizienten $c_k \in \mathbb{R}$.

b) Sei nun zusätzlich $x_3 = 1$ und $f_3 = 0$. Bestimmen Sie das Interpolationspolynom $p_3 \in P_3$ durch die Punkte $(x_0, f_0), (x_1, f_1), (x_2, f_2)$ und den neuen Punkt (x_3, f_3) . Bringen Sie Ihre Lösung in die Form $p_3(x) = b_3x^3 + b_2x^2 + b_1x + b_0$ mit Koeffizienten $b_k \in \mathbb{R}$.

Aufgabe 2 (Quadratur, 4+1 Punkte)

Gegeben sei die Quadraturformel

$$Q_{\alpha}(f) = \lambda_{\alpha,1}f(0) + \lambda_{\alpha,2}f(\alpha) + \lambda_{\alpha,3}f(1)$$

für $\alpha \in (0,1)$ und stetige Funktionen $f:[0,1] \to \mathbb{R}$.

- a) Berechnen Sie die Quadraturgewichte $\lambda_{\alpha,i}$ in Abhängigkeit von α , so dass die Quadraturformel Q_{α} für alle Polynome vom Grad 2 exakt ist.
- b) Für welche $\alpha \in (0,1)$ ist die Quadraturformel positiv?

Aufgabe 3 (Anfangswertproblem I, 2+3 Punkte)

a) Bestimmen Sie die Lösung des homogenen Anfangswertproblems

$$x'(t) = \lambda x(t), \quad x(0) = 1$$

für $\lambda \in \mathbb{R}$. Wie verhält sich die Lösung für $t \to \infty$ in Abhängigkeit von λ ?

b) Nun sei $\lambda < 0$. Das explizite Euler-Verfahren mit Schrittweite $\tau > 0$ soll auf das AWP aus a) angewendet werden. Geben Sie die numerische Lösung $\{x_k\}_{k\in\mathbb{N}}$ explizit, d.h. in nichtrekursiver Form an. Unter welchen Bedingungen an τ reproduziert x_k das qualitative Verhalten der exakten Lösung für $k \to \infty$?

Aufgabe 4 (Anfangswertproblem II, 3+2 Punkte)

a) Bestimmen Sie die Lösung des inhomogenen Anfangswertproblems

$$y'(x) = x - y(x), \quad y(0) = y_0,$$

so dass in der Darstellung der Lösung kein Integral mehr auftritt.

b) Wie muss der Anfangswert $y_0 \in \mathbb{R}$ gewählt werden, damit die Lösung y(x) an der Stelle x = 1 den Wert 0 hat? Zeichnen Sie die Lösung y(x) auf dem Intervall [0, 2].

Aufgabe 5 (Multiple choice, 6 Punkte)

Kreuzen Sie an, ob die jeweiligen Aussagen "wahr" oder "falsch" sind. Für jede richtig angekreuzte Aussage erhalten Sie einen Punkt; für jede falsch angekreuzte Aussage wird ein Punkt abgezogen. Sie können jedoch nicht weniger als 0 Punkte in dieser Aufgabe bekommen.

wahr	falsch	Aussage
		Wenn $f \in C[a, b]$ nicht die Nullfunktion ist, dann ist auch das Interpolation- spolynom $p_n = \phi_n(f), n \in \mathbb{N}$ nie die Nullfunktion.
		Das explizite Euler-Verfahren zur Approximation der Lösung von $x'=\lambda x$ ist für jedes $\lambda\in\mathbb{R}$ konsistent mit der Ordnung $p=1$.
		Die Lösung des Anfangswertproblems $x'(t) = Ax(t), \ 0 < t \le T, \ x(0) = x_0 \in \mathbb{R}^m$, ist auch für die Nullmatrix $A = 0 \in \mathbb{R}^{m,m}$ eindeutig bestimmt.
		Der Interpolationsfehler der Newton-Darstellung des Interpolationspolynoms ist immer kleiner als der Interpolationsfehler der Lagrange-Darstellung des Interpolationspolynoms.
		Die Simpson-Regel ist für alle stetigen Funktionen von vierter Ordnung.
		Positive Quadraturformeln haben höchstens den Grad 7.