Fachbereich Mathematik & Informatik Freie Universität Berlin JProf. Dr. O. Sander, P. Gussmann

7. Übung zur Vorlesung

FUNKTIONENTHEORIE

SS 2011

http://numerik.mi.fu-berlin.de/wiki/SS_2011/Vorlesungen/Funktionentheorie.php

Abgabe: 07.06.2011

0. Aufgabe (Keine Pflichtaufgabe: 4 Bonuspunkte)

Finde eine nullhomologe Kurve, die nicht nullhomotop ist. Dabei nennen wir eine Kurve $\gamma \colon [a,b] \to X$ mit $\gamma(a) = \gamma(b) = x_0 \in X$ nullhomotop in X, falls es eine stetige Abbildung $F \colon [0,1] \times [a,b] \to X$ mit $F(0,\cdot) = \gamma$, $F(1,\cdot) \equiv x_0$ und $F(\cdot,a) = F(\cdot,b) \equiv x_0$ gibt. Eine Skizze samt Begründung reicht aus. Ein formaler Beweis wäre natürlich noch besser.

1. Aufgabe (4 Punkte)

Sei R > 0 und $f: D_R(0) \to \mathbb{C}$ holomorph. Wir setzen:

$$M(r) := \sup\{|f(z)| : |z| = r\}.$$

Zeige dass $M:[0,R)\to\mathbb{R}$ stetig und monoton ist. Zeige weiterhin, dass falls f nicht konstant ist, M(r) sogar streng monoton ist.

2. Aufgabe (4 Punkte)

Welche der folgenden Mengen ist einfach zusammenhängend (mit Beweis):

$$\mathbb{C} \setminus \{0\}, \quad \mathbb{C} \setminus [0,1] \quad \text{und} \quad \mathbb{C} \setminus \{z \in \mathbb{C} \mid \operatorname{Re} z \leq 0, \operatorname{Im} z = 0\}?$$

3. Aufgabe (4 Punkte)

Es sei Q ein offenes achsenparalleles Rechteck mit den Ecken z_0, \ldots, z_3 , und Γ sei der Zyklus

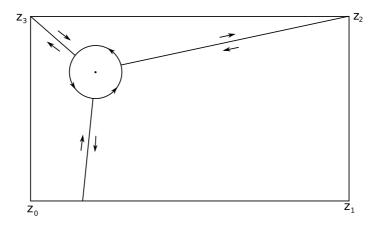
$$[z_0, z_1] + [z_1, z_2] + [z_2, z_3] + [z_3, z_0].$$

Zeige $n(\Gamma, z) = 0$ für $z \in \mathbb{C} \setminus \overline{Q}$ und $n(\Gamma, z) = 1$ für $z \in Q$.

Hinweis: Zeige für $z \in Q$ mit Hilfe des Cauchyschen Integralsatzes für konvexe Gebiete

$$\int_{\Gamma} \frac{1}{\zeta - z} \, d\zeta = \int_{\partial D_{\varepsilon}(z)} \frac{1}{\zeta - z} \, d\zeta.$$

Dabei kann man sich etwa der in der Figur angedeuteten Hilfswege bedienen.



4. Aufgabe (4 Punkte)

Integriere die Funktion

$$f(z) = \frac{e^z - e^{-z}}{z^4}$$

 mit Hilfe des Cauchyschen Integralsatzes jeweils entlang der folgenden Integrationswege:

