Fachbereich Mathematik & Informatik Freie Universität Berlin JProf. Dr. O. Sander, P. Gussmann

10. Übung zur Vorlesung

Funktionentheorie

SS 2011

http://numerik.mi.fu-berlin.de/wiki/SS_2011/Vorlesungen/Funktionentheorie.php

Abgabe: 28.06.2011

1. Aufgabe (4 Punkte)

Berechne die Laurent-Reihen der folgenden Funktionen in den angegebenen Gebieten:

a)
$$\frac{3}{(z+1)(z-2)}$$
 für $1 < |z| < 2$,

a)
$$\frac{3}{(z+1)(z-2)}$$
 für $1 < |z| < 2$, b) $\left(\frac{z-z_0}{z-a}\right)^2$ für $|z-z_0| > |z-a|$,

c)
$$\frac{1}{z(z-3)^2}$$
 für $1 < |z-1| < 2$,

d)
$$\left(\frac{z}{z-1}\right)^k$$
 mit $k \in \mathbb{N}$ für $|z| > 1$.

2. Aufgabe (4 Punkte)

Bestimme für die folgenden Funktionen f und Punkte z_0 die Art der Singularität von f in z_0 . Gib bei hebbaren Singularitäten den Grenzwert von f, und im Falle eines Pols den Hauptteil

a)
$$\frac{z^3 + 3z + 2i}{z^2 + 1}$$
 in $z_0 = -i$,

b)
$$\frac{\cos z - 1}{z^4}$$
 in $z_0 = 0$,

c)
$$\tan z$$
 in $z_0 = \frac{\pi}{2}$,

d)
$$\sin \frac{\pi}{z^2 + 1}$$
 in $z_0 = i$.

3. Aufgabe (4 Punkte)

In einem Punkt z_0 habe f einem Pol m-ter Ordnung, g einem Pol n-ter Ordnung und h einem Nullstelle p-ter Ordnung. Bestimme die Art der Singularität in z_0 für die Funktionen

$$f+g$$
, $f+h$, fg , fh , $\frac{f}{g}$, $\frac{f}{h}$ und $\frac{h}{f}$.

4. Aufgabe (4 Punkte)

Es sei z_0 eine isolierte Singularität von f. Zeige, dass z_0 kein Pol von e^f ist.