Fachbereich Mathematik \& Informatik
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, M.-W. Wolf

Exercise 1 for the lecture
 Numerik III
 SS 2012

Due: Thursday, April 26th, 2012, 12:15, during the tutorial

Problem 1 (2 TP)
Let $\Omega \subset \mathrm{R}^{3}$ be a bounded domain with sufficiently smooth boundary and

$$
H_{C}=\left\{v \in C^{1}(\bar{\Omega})|v|_{\partial \Omega}=0\right\} .
$$

Prove that the variational equality

$$
u \in H_{C}: \quad \int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in H_{C}
$$

has at most one solution.

Problem 2 (4 TP)
Let H be a pre-Hilbert space equipped with the scalar product (\cdot, \cdot) and let ℓ be a bounded, linear functional on H.
a) Show that the quadratic functional

$$
\mathcal{J}(v)=\frac{1}{2}(v, v)-\ell(v), \quad v \in H,
$$

has the Fréchèt derivative

$$
\mathcal{J}^{\prime}(w)=(w, \cdot)-\ell
$$

at $w \in H$.
b) Show that $u \in H$ solves the minimization problem

$$
u \in H: \quad \mathcal{J}(u) \leq \mathcal{J}(v) \quad v \in H,
$$

if and only if $\mathcal{J}^{\prime}(u)=0$.
c) Apply the abstract results in a) and b) to the special case $H=C^{1}(\bar{\Omega})$, equipped with the scalar product

$$
(v, w)_{1}=\int_{\Omega} \nabla v \cdot \nabla w d x+\int_{\Omega} v w d x
$$

and $\ell(v)=\int_{\Omega} f v d x$ with $f \in C(\bar{\Omega})$.
d) Determine the Euler-Lagrange equation associated with the above minimization problem in this special case.

Problem 3 (4 PP)
For given $\varepsilon, \beta \in \mathrm{R}$ and $\varepsilon>0$, we consider the boundary value problem to find $u \in$ $C[0,1] \cap C^{2}(0,1)$ such that

$$
\begin{equation*}
\varepsilon u^{\prime \prime}+\beta u^{\prime}=1 \quad \text { in }(0,1), \quad u(0)=u(1)=0 . \tag{1}
\end{equation*}
$$

a) Find the solution u of (II).
b) Plot the solution $u=$ for $\varepsilon=1,10^{-2}, 10^{-4}$ and $\beta=1,-1$. Which problem is obtained from (1) in the limit case $\varepsilon=0$?

Problem 4 (2 PP)
For given $g \in \mathrm{R}$, we consider the boundary value problem to find $u \in C[0,1] \cap C^{2}(0,1)$ such that

$$
\begin{equation*}
u^{\prime \prime}=1 \quad \text { in }(0,1), \quad u^{\prime}(0)=0, \quad u^{\prime}(1)=g . \tag{2}
\end{equation*}
$$

a) Determine all $g \in \mathrm{R}$ such that (21) has a solution.
b) Let g be selected such that (2) has a solution. Determine a solution that additionally satisfies the condition

$$
\int_{0}^{1} u d x=M
$$

with given $M \in \mathrm{R}$.

