Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 2 for the lecture
Numerics III
SoSe 2012

Due: till Thursday, May 3rd, 2012, 12 o'clock

Problem 1 (4 TP)
Classify the following pdes.
a) $-\operatorname{div}(\alpha(x) \nabla u)=0, \quad \alpha \in C^{1}(\Omega), \quad \alpha(x) \geq \alpha_{0}>0$.
b) $\varepsilon \Delta u-\vec{\beta} \nabla u=0$,
(i) for $\varepsilon \neq 0, \quad$ (ii) for $\varepsilon=0$.
c) $\left(c_{0}^{2}-u_{x}^{2}\right) u_{x x}-2 u_{x} u_{y} u_{x y}+\left(c_{0}^{2}-u_{y}^{2}\right) u_{y y}=0 \quad c_{0}>0$.

Problem 2 (4 TP)
Consider the Cauchy problem

$$
\begin{aligned}
a u_{x x}+2 b u_{x y}+c u_{y y} & =d & & \text { in } \mathrm{R}^{2}, \\
u & =u_{0} & & \text { on } \gamma, \\
\frac{\partial}{\partial n} u & =u_{1} & & \text { on } \gamma .
\end{aligned}
$$

with a smooth curve $\gamma: I \rightarrow \mathrm{R}^{2}$ in R^{2}. Show that the condition

$$
\operatorname{det}(s)=a \gamma_{2}^{\prime}(s)^{2}-2 b \gamma_{1}^{\prime}(s) \gamma_{2}^{\prime}(s)+c \gamma_{1}^{\prime}(s)^{2} \neq 0
$$

is sufficient to compute $u_{x x x}, u_{x x y}, u_{y y x}$ and $u_{y y y}$ in $\gamma(s)$.

Problem 3 (3 TP)
Derive d'Alembert's solution of the following initial value problem for the wave equation

$$
\begin{aligned}
u_{x x}-u_{y y} & =0 & & \text { for }(x, y) \in \mathrm{R} \times \mathrm{R}_{+} \\
u(x, 0) & =u_{0}(x) & & \text { for } x \in \mathrm{R}, \\
u_{y}(x, 0) & =u_{1}(x) & & \text { for } x \in \mathrm{R} .
\end{aligned}
$$

Problem 4 (4 TP)
Consider the initial value problem

$$
\begin{equation*}
\rho_{t}+v_{\max }\left(\rho\left(1-\rho / \rho_{\max }\right)\right)_{x}=0, \quad t>0, \quad \rho(x, 0)=\rho_{0}(x) \tag{1}
\end{equation*}
$$

for the nonlinear car conservation law with $v_{\max }$ and $\rho_{\max }$ describing maximal velocity and density, respectively.
a) Compute the characteristics of (1).
b) Show by a counterexample that smoothness of the initial data ρ_{0} does not imply existence of a classical solution $\rho \in C^{1}\left(\mathrm{R} \times \overline{\mathrm{R}}_{+}\right)$.

