Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 3 for the lecture
 Numerics III

SoSe 2012

Due: till Thursday, May 10th, 2012, 12 o'clock

Problem 1 (6 TP)
Let us consider the heat equation in one space dimension.
a) Find an ill-posed initial value problem for the backward facing heat equation

$$
u_{t}+u_{x x}=0
$$

in $\mathbb{R} \times \mathbb{R}^{+}$, for which the solution does not continuously depend on the data.
b) Let $\sum_{j=0}^{\infty} a_{j} \cos (j \pi x)$ be the Fourier series of the 2-periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=|x|$ on $[-1,1]$. Derive the (classical) solution (there is only one) of the initial value problem for the heat equation on $\mathbb{R} \times \mathbb{R}^{+}$with an initial distribution f in terms of series. What can you say about the quality (smoothness) of the solution $u(\cdot, t)$ for arbitrary $t>0$ compared to f ? What does that mean for the backward facing heat equation? Interprete this fact physically, especially concerning the behavior of $u(\cdot, t)$ for $t \rightarrow \infty$.

Problem 2 (4 TP)
Let $\Gamma:=\left\{e^{i \phi} \mid 0<\phi<\alpha\right\}$ and $\Omega:=\{r z \mid 0<r<1, z \in \Gamma\}$. Solve the Poisson equation

$$
\begin{aligned}
\Delta u & =0 & & \text { in } \Omega \\
u\left(e^{i \phi}\right) & =\sin \left(\phi \frac{\pi}{\alpha}\right) & & \text { on } \Gamma \\
u & =0 & & \text { on } \partial \Omega \backslash \Gamma .
\end{aligned}
$$

For which $\alpha \in] 0,2 \pi]$ do we have $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$, and for which $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$? Hint: Try the ansatz $u=z^{a}$.

Problem 3 (6 TP)
a) Compute the singularity function $s(\cdot, a)$ in one dimension, in order to be able to proof the representation formula for the Poisson problem in this case, analogously to the lecture notes. Notice that for a function f on the interval $[b, c]$, one defines

$$
\int_{\partial[b, c]} f(x) d \sigma(x):=f(b)+f(c)
$$

and for the outer normals, we have $n(b)=-1$ and $n(c)=1$.
b) Derive for the interval $[0, L]$, with $L>0$, Green's function of the first kind $G(\cdot, a)$, which yields a representation formula for solutions $u \in C^{2}([0, L])$ of the Dirichlet problem

$$
-u_{x x}=f \text { on }[0, L], \quad u(0)=g(0), \quad u(L)=g(L)
$$

in which, additionally to G, the data f and g have to be considered.

