Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 4 for the lecture
 Numerics III

SoSe 2012

Due: till Wednesday, May 16th, 2012, 12 o'clock

Problem 1 (2 TP)
Show that the Laplace operator is invariant under rotations of the coordinate system, i.e. given an orthogonal matrix A with columns $a_{i} \in \mathrm{R}^{d}$, show that

$$
\Delta u(x)=(\Delta(u \circ \psi))\left(\psi^{-1} x\right)=\Delta_{A} u(x):=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial a_{i} \partial a_{i}} u(x) \quad \forall x \in \mathrm{R}^{d}
$$

where ψ is a rotation given by $\psi(x)=A(x-c)+c$ around a center $c \in \mathrm{R}^{d}$.
Problem 2 (4 TP)
Consider a domain $\Omega \subset \mathrm{R}^{d}$ and $G:(\bar{\Omega} \times \Omega) \backslash\{(x, a) \mid x=a\} \rightarrow \mathrm{R}$ such that each $G(\cdot, a)$ is a Green's function of first kind. Show that G is strictly positiv, i.e.,

$$
G(x, a)>0 \quad \forall x, a \in \Omega, x \neq a
$$

by using a Maximum principle.
Problem 3 (4 PP)
Illustrate the influence of pertubations of the right hand side f in x_{0} on the solution $u(x)$ of the poisson problem
a) on the interval $\Omega_{1}=[0, L] \in \mathrm{R}$
b) on the disc $\Omega_{2}=K_{R}(y) \in \mathrm{R}^{2}$, here the Green's function is given by

$$
G(x, a)=-\frac{1}{2 \pi}\left(\log |x-a|-\log \left\lvert\,\left(\frac{|a-y|}{R}\left|x-a^{\prime}\right|\right)\right.\right)
$$

with $x, a \in \Omega_{2}$ and $a^{\prime}=y+R^{2}|a-y|^{-2}(a-y)$.

Problem 4 (4 extra TP)
The difference star of the nine-point formula is given by

$$
\Delta_{9} u(x)=\sum_{i, j=-1}^{1} S_{i+2, j+2} u\left(x+\binom{i}{j} h\right) \quad \text { with } \quad S=\frac{1}{6 h^{2}}\left(\begin{array}{ccc}
-1 & -4 & -1 \\
-4 & 20 & -4 \\
-1 & -4 & -1
\end{array}\right) .
$$

Show that under sufficient regularity assumptions, for $\Delta u=$ const it holds that

$$
\Delta u(x)-\Delta_{9} u(x)=\mathcal{O}\left(h^{4}\right) .
$$

