Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 5 for the lecture
 Numerics III

SoSe 2012

Due: till Thursday, May 24th, 2012, 12 o'clock

Problem 1 (2 TP)
Find a domain Ω and a grid Ω_{h} with constant mesh size h, such that Ω is connected but Ω_{h} is not discrete connected.

Problem 2 (3 TP)
Show that the weights $\alpha_{Z}, \alpha_{W}, \alpha_{O}, \alpha_{N}, \alpha_{S}$ of the standard five-point finite difference approximation of the Laplace operator satisfy

$$
\alpha_{Z}<0, \quad \alpha_{W}, \alpha_{O}, \alpha_{N}, \alpha_{S}>0, \quad \alpha_{Z}+\alpha_{W}+\alpha_{O}+\alpha_{N}+\alpha_{S}=0
$$

Problem 3 (8 PP)

Approximate the solution of the following BVP conditions

$$
\begin{aligned}
-\Delta u=f & \text { in } \Omega_{i} \\
u=0 & \text { on } \partial \Omega_{i}
\end{aligned}
$$

$i=1,2$, using the Shortley-Weller method (finite differences):
a) Let $\Omega_{1}=(0,1) \times(0,1)$ and $f=1$ on the disc around the point $(0.5,0.5)$ with radius $r=0.3$, and $f=0$ elsewhere. Calculate numerically the approximate solution for different mesh sizes and compare your results with a reference solution (on a very fine grid, e.g. with step size $h=1 / 50$). Which order of accuracy does your method have in the L^{2} norm and in the L^{∞} norm?
b) Consider the Dirichlet problem from above on the domain $\Omega_{2}=\Omega_{1} \backslash \Omega$, where $\Omega=(0.5,1) \times(0.5,1)$. What do you observe?

Problem 4 (5 TP +3 extra PP)
Consider the boundary value problem

$$
\begin{aligned}
-\Delta u & =f & & \text { in } \Omega \\
u & =g_{D} & & \text { on } \Gamma_{D} \\
\frac{\partial u}{\partial n} & =g_{N} & & \text { on } \Gamma_{N}
\end{aligned}
$$

on the domain $\Omega=(0,1) \times(0,1)$ with boundary $\partial \Omega=\Gamma_{D} \cup \Gamma_{N}$.
a) Derive a finite difference approximation for the case
$\Gamma_{D}=\left\{\left(x_{1}, x_{2}\right) \mid 0<x_{1} \leq 1, x_{2}=1\right\} \cup\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=1,0<x_{2} \leq 1\right\}$ using
(i) the standard five-point formula
(ii) the nine-point formula (exercise 4, problem 4).
b) Implement your discretisation from part ii) and solve the problem

$$
\begin{aligned}
-\Delta u & =0 & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{D} \\
\frac{\partial u\left(x_{1}, 0\right)}{\partial n} & =-4 \pi \sin \left(4 \pi x_{1}\right) & & x_{1} \in(0,1) \\
\frac{\partial u\left(x_{2}, 0\right)}{\partial n} & =-4 \pi \sin \left(4 \pi x_{2}\right) & & x_{2} \in(0,1)
\end{aligned}
$$

with the exact solution $u\left(x_{1}, x_{2}\right)=\sin \left(4 \pi x_{1}\right) \sin \left(4 \pi x_{2}\right)$.
Plot the point errors at $(h, h), \ldots,(1-h, 1-h)$ for different mesh sizes h and discuss the results.

