Department of Mathematics & Computer Science Freie Universität Berlin

Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 5 for the lecture NUMERICS III SoSe 2012

Due: till Thursday, May 24th, 2012, 12 o'clock

Problem 1 (2 TP)

Find a domain Ω and a grid Ω_h with constant mesh size h, such that Ω is connected but Ω_h is not discrete connected.

Problem 2 (3 TP)

Show that the weights $\alpha_Z, \alpha_W, \alpha_O, \alpha_N, \alpha_S$ of the standard five-point finite difference approximation of the Laplace operator satisfy

$$\alpha_Z < 0$$
, $\alpha_W, \alpha_O, \alpha_N, \alpha_S > 0$, $\alpha_Z + \alpha_W + \alpha_O + \alpha_N + \alpha_S = 0$.

Problem 3 (8 PP)

Approximate the solution of the following BVP conditions

$$-\Delta u = f \quad \text{in } \Omega_i$$
$$u = 0 \quad \text{on } \partial \Omega_i ,$$

i = 1, 2, using the Shortley-Weller method (finite differences):

- a) Let $\Omega_1 = (0,1) \times (0,1)$ and f = 1 on the disc around the point (0.5,0.5) with radius r = 0.3, and f = 0 elsewhere. Calculate numerically the approximate solution for different mesh sizes and compare your results with a reference solution (on a very fine grid, e.g. with step size h = 1/50). Which order of accuracy does your method have in the L^2 norm and in the L^∞ norm?
- b) Consider the Dirichlet problem from above on the domain $\Omega_2 = \Omega_1 \backslash \Omega$, where $\Omega = (0.5, 1) \times (0.5, 1)$. What do you observe?

Problem 4 (5 TP + 3 extra PP)

Consider the boundary value problem

$$-\Delta u = f$$
 in Ω
$$u = g_D$$
 on Γ_D
$$\frac{\partial u}{\partial n} = g_N$$
 on Γ_N

on the domain $\Omega = (0,1) \times (0,1)$ with boundary $\partial \Omega = \Gamma_D \cup \Gamma_N$.

- a) Derive a finite difference approximation for the case
 - $\Gamma_D = \{(x_1, x_2) | 0 < x_1 \le 1, x_2 = 1\} \cup \{(x_1, x_2) | x_1 = 1, 0 < x_2 \le 1\}$ using
 - (i) the standard five-point formula
 - (ii) the nine-point formula (exercise 4, problem 4).
- b) Implement your discretisation from part ii) and solve the problem

$$-\Delta u = 0 \qquad \text{in } \Omega$$

$$u = 0 \qquad \text{on } \Gamma_D$$

$$\frac{\partial u(x_1, 0)}{\partial n} = -4\pi \sin(4\pi x_1) \qquad x_1 \in (0, 1)$$

$$\frac{\partial u(x_2, 0)}{\partial n} = -4\pi \sin(4\pi x_2) \qquad x_2 \in (0, 1)$$

with the exact solution $u(x_1, x_2) = \sin(4\pi x_1)\sin(4\pi x_2)$.

Plot the point errors at $(h, h), \ldots, (1 - h, 1 - h)$ for different mesh sizes h and discuss the results.