Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 6 for the lecture
 Numerics III

SoSe 2012

Due: till Thursday, May 31th, 2012, 12 o'clock

Problem 1 (4 TP)
Consider the space

$$
\mathcal{L}(V, W)=\{L: V \rightarrow W \mid L \text { linear and bounded }\} .
$$

Show that $\mathcal{L}(V, W)$ is a Banach space, if W is a Banach space.

Problem 2 (2 TP)
Let us consider the inner product space

$$
H_{C}=\left\{v \in C^{1}(\Omega) \cap C(\bar{\Omega})|v|_{\partial \Omega}=0,\|v\|_{H^{1}(\Omega)}<\infty\right\}
$$

equipped with the inner product $(\cdot, \cdot)_{H^{1}(\Omega)}$. Find a bilinear form on H_{C}, which is positive definite, but not H_{C}-elliptic.

Problem 3 (2 TP)
Let H be a Hilbert space with scalar product (\cdot, \cdot) and $S \subset H$ a closed subspace. Show that

$$
P u=\underset{v \in S}{\operatorname{argmin}}\left(\frac{1}{2}(v, v)-(u, v)\right)
$$

defines an orthogonal projection $P: H \rightarrow S$, the so-called Ritz projection.

Problem 4 (4 TP)
Let Ω be a bounded domain and $u, v \in H^{1}(\Omega)$. Show that the distributional derivative of $u v$ satisfies the product rule

$$
\partial_{i}(u v)=\left(\partial_{i} u\right) v+u\left(\partial_{i} v\right) .
$$

Is $u v$ always in $H^{1}(\Omega)$? Give a proof or counter-example.

Problem 5 (4 TP)
Which of the following functions is an element of $H^{1}((-1,1))$ (and why or why not, respectively)?
a) $x \mapsto \sqrt{x+1}$
b) $x \mapsto|x|$
c) $x \mapsto|x|+\chi_{\mathbb{Q}}(x)$

Here, $\chi \mathbb{Q}$ is the characteristic function of the set \mathbb{Q}, i.e., it is 1 on \mathbb{Q} and 0 otherwise.

