Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 8 for the lecture
 Numerics III

SoSe 2012

Due: till Thursday, June 14th, 2012, 12 o'clock

Problem 1 (4 TP)
Let $\Omega \subset \mathbb{R}^{n}$ be a domain with a sufficiently smooth boundary. Consider the boundary value problem

$$
\begin{aligned}
-\alpha \Delta u+\beta \cdot \nabla u & =f & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

with $\alpha>0, \beta \in \mathbb{R}^{n}$ and a given function $f \in C(\bar{\Omega})$.
a) Derive a weak formulation of this problem and show, that the resulting variational problem is well posed in the Sobolev space $H_{0}^{1}(\Omega)$.
b) How does the variational problem change, if β is a function in $C^{1}(\bar{\Omega})^{n}$, and under which condition do we have still a well posed problem?

Problem 2 (3 TP)
Let $\Omega \subset \mathrm{R}^{n}$ be a boundet domain and $\partial_{D} \cup \partial_{N}=\partial \Omega$ a non-overlapping partition of $\partial \Omega$. Consider the function

$$
u=u_{0}+w_{0}
$$

where $w_{0} \in H^{1}(\Omega)$ satisfies $\operatorname{tr}_{\partial_{D}} w_{0}=g_{D}$ and $u_{0} \in H=\left\{v \in H^{1}(\Omega) \mid \operatorname{tr}_{\partial_{D}} v=0\right\}$ solves

$$
a\left(u_{0}, v\right)=l(v)-a\left(w_{0}, v\right) \quad \forall v \in H
$$

with

$$
a(v, w)=\int_{\Omega} \nabla v \cdot \nabla w \quad \text { and } \quad l(v)=\int_{\Omega} f v+\int_{\partial_{N}} g_{N} v \quad g_{N} \in L^{2}\left(\partial_{N}\right)
$$

Show that u solves

$$
\begin{aligned}
-\Delta u(x) & =f(x) & & \forall x \in \Omega, \\
u(x) & =g_{D} & & \forall x \in \partial_{D}, \\
\frac{\partial}{\partial n} u(x) & =g_{N} & & \forall x \in \partial_{N}
\end{aligned}
$$

if $u \in C^{2}(\bar{\Omega})$.

Problem 3 (2 TP)
Consider the grid $a=x_{0}<x_{1}<\ldots<x_{n}=b$ on the interval (a, b). Let u be the solution of

$$
u \in H_{0}^{1}(a, b): \quad\left(u^{\prime}, v^{\prime}\right)=(f, v) \quad \forall v \in H_{0}^{1}(a, b)
$$

and $u_{h} \in S_{h}$ the approximation in the linear finite element space $S_{h} \subset H_{0}^{1}(a, b)$ on the above grid. Show that u_{h} coincides with the linear interpolation of u on the grid, i.e. $u_{h}\left(x_{i}\right)=u\left(x_{i}\right)$ for $i=0, \ldots, n$.

Problem 4 (6 PP)
To solve a variational problem in a finite dimensional space V we need to assemble a matrix $A \in \mathrm{R}^{n \times n}$ with $A_{i, j}=a\left(\lambda_{i}, \lambda_{j}\right)$ where $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a basis of V.
a) Make yourself familiar with the Matlab programms basis.m and quadrature.m on the homepage.
b) Write a Matlab programm $A=$ assemble_stiff (S, B, Q), which assembles the bilinearform

$$
\int_{\tau} \nabla u(x) \cdot \nabla v(x) d x
$$

for the basis $\left\{\lambda_{i, \tau}\right\}$ on a triangle τ given by the columns of the matrix S . The basis $\left\{\lambda_{i, \tau}\right\}$ on τ results from a transformation of the basis given by B on the unit simplex. Use the quadrature rule Q for evalution of the integrals.
Test your programm with $B=$ basis(1), $Q=$ quadrature(1) and three triangles of your choice. What happens, if you scale one triangle with different factors h ?
c) Analog to b) write a Matlab programm $M=$ assemble_mass (S, B, Q), which assembles the bilinearform

$$
\int_{\tau} u(x) v(x) d x .
$$

Add a Gauß quadratur rule to quadrature. m , which is of order $p \geq 2$ on the unit simplex in R^{2}. Test your programm with $B=$ basis(1) and the new quadratur rule $Q=$ quadrature (2) and triangles of your choice. What happens, if you scale one triangle with different factors h ?

