Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 9 for the lecture
 Numerics III

SoSe 2012

Due: till Thursday, June 21th, 2012, 12 o'clock

Problem 1 (8 PP)
a) Make yourself familiar with the MatLAB programmes basis.m, quadrature.m and uniform_grid.m on the homepage.
b) Write a Matlab programme $\mathrm{A}=$ assemble_P1 (grid, local_assem, Q), which assembles the global matrix $A_{i, j}=a\left(\lambda_{j}, \lambda_{i}\right)$ for the linear finite elements nodal basis $\left\{\lambda_{i}\right\}$ on the grid grid. The matrix should be calculated as a sum of element matrices assembled by the function $M=$ local_assem (T, B, Q). Thereby the columns of T give a triangle of the grid, $\mathrm{B}=$ basis(1) the local basis and Q a quadrature rule defined on the unit simplex. Test your programme by assembling the stiffness and the mass matrix for a uniform grid, using the local assemblers assemble_stiff and assemble_mass and appropriate quadrature rules.
c) Write a Matlab programme [A,b] = assemble_dirichlet (grid, A, b, g), which „includes"Dirichlet boundary conditions, given by the function function $y=g(x)$, in the matrix A and the right-hand side b .
d) Use your programmes to approximate a solution of the problem

$$
-\Delta u=f \quad \text { in } \Omega, \quad u=g \quad \text { on } \partial \Omega
$$

for

$$
f(x)= \begin{cases}0.2 & \text { for }|x-(0.5,0.5)| \leq 0.2 \\ 0 & \text { else }\end{cases}
$$

and $g=0$ with linear finite elements on the unit square $\Omega=[0,1]^{2}$ and on the unit circle $\Omega=K_{1}(0)$, and visualize the solution with the Matlab command trisurf.

Advices:

- You can load a grid on the unit circle with the command grid = load('circle'), using the file 'circle' on the homepage.
- The right-hand side b can be assembled by linear interpolation of f, i.e. by evaluation at the grid points and multiplication with the mass matrix.

Problem 2 (8 TP)
a) Consider $F_{\tau}=B_{\tau}+p_{0}: T \rightarrow \tau$ with B_{τ} linear, the transformation of the unit triangle $T=\operatorname{conv}\left\{0, e_{1}, e_{2}\right\}$ on a triangle $\tau=\operatorname{conv}\left\{p_{0}, p_{1}, p_{2}\right\} \subset \mathrm{R}^{2}$. Show the estimates

$$
\begin{aligned}
|v|_{1, \tau} & \leq c_{2}\left|B_{\tau}^{-1}\right|\left|\operatorname{det} B_{\tau}\right|^{\frac{1}{2}}\left|v \circ F_{\tau}\right|_{1, T}, \\
\left|v \circ F_{\tau}\right|_{2, T} & \leq c_{1}\left|B_{\tau}\right|^{2}\left|\operatorname{det} B_{\tau}\right|^{-\frac{1}{2}}|v|_{2, \tau}
\end{aligned}
$$

by using the chain rule for $v \in H^{2}(\tau)$.
b) Consider $F=B_{\tau}+p_{0}$ as defined in a). Show that

$$
\left|B_{\tau}\right| \leq(2+\sqrt{2}) r_{\tau}, \quad\left|B_{\tau}^{-1}\right| \leq \frac{1}{\sqrt{2}} \rho_{\tau}^{-1}
$$

with r_{τ} and ρ_{τ} the radii of the outer and inner circle of τ.
c) Let $\left(\mathcal{T}_{h}\right)_{h \in \mathcal{H}}$ be a family of triangulations of a domain $\Omega \subset \mathrm{R}^{2}$ with polygonal boundary. Prove the following error estimate for the interpolation operator I_{h} : $C(\Omega) \rightarrow S_{h}$

$$
\left\|u-I_{h} u\right\|_{1, \Omega} \leq\left(c \max _{\tau \in \mathcal{T}_{h}} \frac{r_{\tau}}{\rho_{\tau}}\right) h|u|_{2} \quad \forall u \in C^{2}(\Omega)
$$

You can use the estimate

$$
\left\|v-I_{T} v\right\|_{1, T} \leq c|v|_{2, T}
$$

for functions v and the interpolation I_{T} on the unit triangle.

