10. Übung zur Vorlesung

Analysis I

Sommersemester 2013

Abgabe bis Donnerstag, 27. Juni 2013, 16 Uhr

1. Aufgabe (Offen und abgeschlossen, 4 Punkte)

Überprüfen Sie die folgenden Teilmengen A des jeweiligen metrischen Raumes (X, d) auf Offenheit, Abgeschlossenheit und Kompaktheit, wobei $X \subset \mathbb{R}$ und d(x, y) = |x - y|.

- a) $A = [1, \infty)$ als Teilmengen von $X = \mathbb{R}$
- b) A = [1, 5) als Teilmengen von (i) $X = \mathbb{R}$ und (ii) $X = (-\infty, 5)$
- c) $A = [1,5) \cup (3,10] \cup [-3,-2]$ als Teilmengen von $X = \mathbb{R}$
- d) $A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ als Teilmengen von $X = \mathbb{R}$

2. Aufgabe (Einheitskugeln, 4 Punkte)

Es sei X ein Vektorraum. Eine Abbildung $||\cdot||:X\to\mathbb{R}$ heißt Norm auf X, falls sie die folgenden Bedingungen erfüllt:

- (i) $||x|| \ge 0$ für alle $x \in X$, und ||x|| = 0 gilt genau dann, wenn x = 0 ist.
- (ii) $||\lambda \cdot x|| = |\lambda| \cdot ||x||$ für alle $\lambda \in \mathbb{R}$ und $x \in X$.
- (iii) $||x + y|| \le ||x|| + ||y||$ für alle $x, y \in X$.

Das Paar $(X, ||\cdot||)$ heißt normierter Raum.

Eine Norm induziert eine Metrik auf X durch

$$d(x,y) := ||x - y||.$$

Für einen metrischen Raum (X, d) und $\varepsilon > 0$ ist die ε -Kugel um einen Punkt $x_0 \in X$ definiert als

$$\mathcal{B}(x_0,\varepsilon) = \{ x \in X : d(x,x_0) < \varepsilon \}.$$

Im folgenden sei $X = \mathbb{R}^2$. Zeichnen Sie die ε -Kugeln um $x_0 = (0,0) \in \mathbb{R}^2$ für $\varepsilon = 1$, wobei die Metrik d durch die folgenden Normen induziert sei:

- a) $||x||_2 = \sqrt{x_1^2 + x_2^2}$,
- b) $||x||_1 = |x_1| + |x_2|$,
- c) $||x||_{\infty} = \max\{|x_1|, |x_2|\}.$

Sind diese Kugeln jeweils offen, abgeschlossen oder beides? Geben Sie außerdem jeweils das Innere $\overset{\circ}{\mathcal{B}}(X_0,\varepsilon)$, den Abschluss $\bar{\mathcal{B}}(x_0,\varepsilon)$ und den Rand $\partial \mathcal{B}(x_0,\varepsilon)$ der Kugeln an.

Zusatz: Wie würden diese Kugeln in $X = \mathbb{R}$ aussehen?

3. Aufgabe (Offen und abgeschlossen II, 4 Punkte)

Man betrachte die Menge

$$X = \{ f : \mathbb{R} \to \mathbb{R} : f(x) = x^2 + px + q; \ p, q \in \mathbb{R} \}$$

aller normierten quadratischen Polynome auf \mathbb{R} mit der Metrik $d(f,g)=||(p_f,q_f)-(p_g,q_g)||_2$, wobei $f(x)=x^2+p_fx+q_f$ und $g(x)=x^2+p_gx+q_g$. Ist die Teilmenge

$$A = \{ f \in X : f \text{ hat genau eine reelle Nullstelle} \} \subset X$$

offen oder abgeschlossen in (X, d)?

4. Aufgabe (Stetige Funktionen, 4 Punkte)

Begründen Sie, dass es keine stetige Funktion $f:\mathbb{R}\to\mathbb{R}$ gibt, die jeden Wert in \mathbb{R} genau zweimal annimmt.

Hinweis: Eine solche Funktion hätte insbesondere zwei Nullstellen. Verwenden Sie den Satz vom Maximum und Minimum.