8. Übung zur Vorlesung

Stochastik II

Sommersemester 2014

Abgabe bis Donnerstag, 20. Juni 2014, 14 Uhr

Aufgabe 1 (Bedingte Wahrscheinlichkeiten, 4 Punkte)

Die Zufallsvariable Z=(X,Y) sei $N(\mu,\Sigma)$ normalverteilt mit Erwartungswert $\mu\in\mathbb{R}^2$ und $\Sigma\in\mathbb{R}^{2\times 2}$, wobei Σ symmetrisch positiv definit ist. Zeigen Sie, dass das Wahrscheinlichkeitsmaß

$$\nu_y \colon \mathcal{B}(\mathbb{R}) \to [0,1], \quad E \mapsto \mathbb{P}(X \in E | Y = y)$$

für alle $y \in \mathbb{R}$ eine Dichte $\rho(x;y)$ bezüglich Lebesbguemaß hat und berechnen Sie $\rho(x;y)$.

Tipp: Berechnen Sie $\mathbb{P}(\cdot|Y\in[y,y+\epsilon))$ und betrachten Sie den Grenzwert $\epsilon\to 0$.

Aufgabe 1 (Realisierung von Markov-Ketten, 4 Punkte)

Sei $(\xi_n)_{n\in\mathbb{N}}$ eine Folge von iid Zufallsvariablen mit Werten in $W\subset\mathbb{R}$ und $X_0:\Omega\to S$ unabhängig von $(\xi_n)_{n\in\mathbb{N}}$. Dabei ist S eine beliebige endliche Menge. Man betrachte eine Abbildung $f:S\times W\to S$ und definiere den stochastischen Prozess $(X_n)_{n\in\mathbb{N}}$ rekursiv durch

$$X_{n+1} = f(X_n, \xi_n).$$

- a) Zeigen Sie: Der Prozess $(X_n)_{n\in\mathbb{N}}$ ist eine homogene Markov-Kette auf S mit Übergangswahrscheinlichkeiten $p_{xy} = \mathbb{P}(f(x,\xi_1) = y)$.
- b) Finden Sie $(\xi_n)_{n\in\mathbb{N}}$ und f für den Zufallsspaziergang auf $S=\{-3,-2,-1,0,1,2,3\}$ von Übungsblatt 8 für absorbierende Randzustände.

Aufgabe 3 (Markov-Eigenschaft, 4 Punkte)

Es sei $(X_n)_{n\in\mathbb{N}}$ eine Markov-Kette mit Zustandsraum S. Beweisen oder widerlegen Sie folgende Aussagen:

- a) Für beliebige Teilmengen $A, B \subset S$ gilt $\mathbb{P}(X_2 \in B | X_1 = x_1, X_0 \in A) = \mathbb{P}(X_2 \in B | X_1 = x_1)$.
- b) Für beliebige Teilmengen $A, B \subset S$ gilt $\mathbb{P}(X_2 \in B | X_1 \in A, X_0 = x_0) = \mathbb{P}(X_2 \in B | X_1 \in A)$.
- c) Für alle Stoppzeiten $\tau < \infty$ (f.s.) und $(x_1, x_2, ...) \in S^{\infty}$ gilt

$$\mathbb{P}(X_{\tau+1} = x_1, X_{\tau+2} = x_2, \dots | X_{\tau} = x) = \mathbb{P}_x(X_1 = x_1, X_2 = x_2, \dots).$$