Fachbereich Mathematik & Informatik Freie Universität Berlin Carsten Hartmann, Ralf Banisch

9. Übung zur Vorlesung

Stochastik II

Sommersemester 2014

Abgabe bis Donnerstag, 27. Juni 2014, 14 Uhr

Aufgabe 1 (Charakterisierung von Markovketten, 4 Punkte) Untersuchen Sie die Markovkette mit der Übergangsmatrix

$$P = \left(\begin{array}{cc} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{array}\right)$$

in Abhängigkeit von den Parametern $0 \le \alpha, \beta \le 1$ auf stationäre Verteilungen, Kommunikationsklassen sowie (positive) Rekurrenz und Transienz.

Aufgabe 2 (Symmetrischer Zufallsspaziergang, 4 Punkte)

Es sei $(X_n)_{n\geq 0}$ eine homogene Markovkette auf $S=\mathbb{Z}$ mit den Übergangswahrscheinlichkeiten

$$\mathbb{P}(X_{n+1} = z + 1 | X_n = z) = \mathbb{P}(X_{n+1} = z - 1 | X_n = z) = \frac{1}{2}, \quad z \in \mathbb{Z}.$$

- 1. Untersuchen Sie die Markovkette auf (positive) Rekurrenz und Transienz.
- 2. Sei $D \subset S$ eine endliche Teilmenge von S und $\tau = \inf\{n \geq 0 \colon X_n \notin D\}$ die Zeit des ersten Austritts aus D. Zeigen Sie, dass die mittlere Austrittszeit $w(z) = \mathbb{E}_z(\tau)$ das lineare Gleichungssystem

$$(I-P)w(z) = 1, \quad z \in D$$

 $w(z) = 0, \quad z \in S \setminus D$

löst. Dabei bezeichnen I die $|S| \times |S|$ -Einheitsmatrix und P die Übergangsmatrix der Kette.

Aufgabe 3 (Bedingte Erwartung, 4 Punkte)

Es sei $(\Omega, \mathcal{E}, \mu)$ ein Wahrscheinlichkeitsraum und $X \colon \Omega \to \mathbb{R}$ eine bezüglich μ integrierbare Zufallsvariable.

- a) Geben Sie $\mathbb{E}(X|\mathcal{F})$ für $\mathcal{F} = \{\emptyset, \Omega\}$ und $\mathcal{F} = \sigma(X)$ an (mit Begründung).
- b) Sei $\mathcal{F} \subset \mathcal{E}$ eine beliebige Sub- σ -Algebra von \mathcal{E} . Zeigen Sie, dass dann gilt: $\mathbb{E}(\mathbb{E}(X|\mathcal{F})) = \mathbb{E}(X)$.
- c) Nun sei neben $\mathcal{F} \subset \mathcal{E}$ eine weitere Sub- σ -Algebra $\mathcal{G} \subset \mathcal{F}$ gegeben. Beweisen Sie die Turmeigenschaft der bedingten Erwartung:

$$\mathbb{E}(\mathbb{E}(X|\mathcal{F})|\mathcal{G}) = \mathbb{E}(X|\mathcal{G})$$
 f.s.