Ergodic Theory and Transfer Operators - Question sheet 1 -

Summer 2015

Exercise 1 (Sequence of sets)

Show that if $\left\{A_{n}\right\}$ is an increasing sequence of measurable sets with $A_{n} \uparrow A$, then $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(A)$.

Hint: Consider the disjoint differences $A_{n} \backslash A_{n-1}$.

Exercise 2 (Circle rotation: invariant measure)

Let $T: S^{1} \rightarrow S^{1}$ denote the rigid rotation of the circle of unit circumference by angle α; that is the map $x \mapsto x+\alpha$. Let m denote the Lebesgue measure on S^{1}, and \mathcal{B} the Borel σ-algebra .
Show that for every $A \in \mathcal{B}$ one has $m\left(T^{-1} A\right)=m(A)$. Proceed as follows:
(a) Show the claim for intervals $I \subset S^{1}$.
(b) Conclude from (a) that the claim holds for finite unions of intervals $E=\bigcup_{i=1}^{n} I_{i}, I_{i}$ interval, $n \in \mathbb{N}$.
(c) Conclude that the claim holds for the algebra \mathcal{A} of subsets of S^{1} generated by all intervals.
(d) Consider $\mathcal{M}=\left\{E \in \mathcal{B} \mid m\left(T^{-1} E\right)=m(E)\right\}$. Show that \mathcal{M} is a monotone class.
(e) Use the Monotone Class Theorem (cf. Handout 1) to show the claim for any $A \in \mathcal{B}$.

Exercise 3 (Invariant sets)

Let $T: X \rightarrow X$ some transformation, and let $E \in \mathcal{B}$ be an invariant set, i.e. $T^{-1}(E)=E$. Prove that its complement, $E^{c}=X \backslash E$, is also an invariant set.

Exercise 4 (MATLAB: ergodicity vs mixing)

Consider the two maps on $X=S^{1} \times S^{1}$:

$$
T_{1}(x, y)=\binom{x+\sqrt{2}}{y+\sqrt{3}} \quad \bmod 1, \quad \quad T_{2}(x, y)=\binom{x+y}{x+2 y} \quad \bmod 1 .
$$

(a) Choose a random point $x \in X$, and plot the points $\left\{T_{1}^{k} x\right\}_{k=0}^{10^{4}}$ and then $\left\{T_{2}^{k} x\right\}_{k=0}^{10^{4}}$. Do the trajectories seem to "get everywhere" for both systems? Do you see a difference in the density of points for the both systems?
(b) Now, choose 1000 random points in $[0,0.1] \times[0,0.1]$, we denote this set of points by E. Plot $T_{i}^{1}(E), T_{i}^{2}(E), \ldots, T_{i}^{7}(E)$ for $i=1,2$. What kind of qualitative difference do you observe?

Remark: The observed difference is the difference between "ergodic" and "mixing" behavior, and is going to be characterized in the lectures.

Exercise 5 (MATLAB: do you trust the results?)

Let $T: S^{1} \rightarrow S^{1}$ denote the circle doubling map: $x \mapsto 2 x \bmod 1$. Write a MATLAB program to simulate 60 iterates of T, i.e. the set $\left\{T^{k} x\right\}_{k=0}^{60}$ for some initial $x \in S^{1}$. Is the answer as you expected?

