ERGODIC THEORY AND TRANSFER OPERATORS — QUESTION SHEET 4 —

Summer 2015

Exercise 1 (Product)

Verify Proposition 1.21 (ergodicity and mixing for products of mpts) for an example numerically. Using the circle rotation $T_1(x) = x + \alpha \mod 1$, and the angle tripling map $T_2(x) = 3x \mod 1$, look at $T_1 \times T_1$, $T_2 \times T_2$, and $T_1 \times T_2$.

What do you expect: is the product of an ergodic transformation and a mixing transformation always ergodic/mixing?

Exercise 2 (Skew-product)

Let $(\Omega, \mathcal{F}, \varrho, \sigma)$ be a ppt and $\{(X, \mathcal{B}, \mu, T_{\omega})\}_{\omega \in \Omega}$ be a family of ppts. Define the skew-product $\tau(\omega, x) = (\sigma\omega, T_{\omega}x)$ as in the lectures.

(a) For $F \in \mathcal{F}$, $A \in \mathcal{B}$, show τ preserves the product measure $\varrho \times \mu$ of sets of the form $F \times A$; that is, show that $(\varrho \times \mu)(\tau^{-1}(F \times A)) = (\varrho \times \mu)(F \times A)$.

Remark: This is the first step in showing that τ preserves the product measure $\varrho \times \mu$ of all measurable sets in $F \otimes \mathcal{B}$.

(b) Show that the skew-product is an extension of its base (Ω, F, ϱ, σ); that is, the base is a factor of the skew-product.

Exercise 3 (Induced transformation)

Describe the action of the induced transformation T_A when

- (a) $X = [0, 1), T(x) = x + \alpha \mod 1$, and A = [0, 1/2);
- (b) $X = \{0, 1\}^{\mathbb{N}}$, σ is the left shift and $A = \{x \in X \mid x_0 = 0\}$.

Exercise 4 (Markov chain)

Suppose one has 10 coins, numbered from 1 to 10, all showing heads. Every minute we uniformly randomly choose a number between 1 and 10, and turn over the coin with that number. This is a Markov process on 11 states, where the current state is the number of tails (thus we start in state 0).

- (a) Describe the 11×11 stochastic transition matrix containing the conditional transition probabilities between these states.
- (b) Determine the stationary distribution on the 11 states, i.e. the left-invariant probability vector to the stochastic matrix from (a).
- (c) Using Kac's lemma, determine the expected time to return to an "all heads" configuration, if one starts in an "all heads" configuration.

Hint: translate the problem to one about Markov shifts.