ERGODIC THEORY AND TRANSFER OPERATORS — QUESTION SHEET 5 —

Summer 2015

Exercise 1 (Validating the Birkhoff Ergodic Theorem)

Choose an initial point $x_0 \in S^1$, and compute an orbit of length 10^6 using the circle tripling map *T*.

- (a) Calculate how many points in the orbit fall in the interval [0, 1/10). Is this consistent with the Birkhoff Ergodic Theorem?
- (b) Use the Matlab command hist to plot a histogram of the orbit of length 10⁶ on 1000 bins. Is this consistent with the Birkhoff Ergodic Theorem?
- (c) Calculate $f_n := \frac{1}{n} \sum_{k=0}^{n-1} f(T^k x_0)$, $n = 1, ..., 10^6$, for $f(x) = x^2$. Plot f_n vs. n. Is this consistent with the Birkhoff Ergodic Theorem?

Exercise 2 (Ergodicity and Extremality)

An invariant probability measure μ is called *extremal*, if it cannot be written in the form $\mu = t\mu_1 + (1 - t)\mu_2$, where μ_1 and μ_2 are two different invariant probability measures, and 0 < t < 1. Prove that an invariant probability measure is extremal if and only if it is ergodic, using the following steps.

- (a) Show that if $E \in \mathcal{B}$ is a *T*-invariant set of nonzero measure, then the measure μ_E , defined by $\mu_E(A) := \mu(E \cap A)/\mu(E)$ for every $A \in \mathcal{B}$, is *T*-invariant. Deduce that if μ is not ergodic, then it is not extremal.
- (b) Show that if μ is ergodic, and $\mu = t\mu_1 + (1 t)\mu_2$, where μ_1 and μ_2 are invariant, and 0 < t < 1, then
 - (i) For every $E \in \mathcal{B}$, it holds $\frac{1}{n} \sum_{k=0}^{n-1} \chi_E \circ T^k(x) \to \mu(E)$ as $n \to \infty$ for μ_i -a.e. $x \in X$ (i = 1, 2).

Hint: Show that $\mu(A) = 0$ implies $\mu_i(A) = 0$ (i = 1, 2) for $A \in \mathcal{B}$.

(ii) Conclude that $\mu_i(E) = \mu(E)$ for all $E \in \mathcal{B}$ (i = 1, 2).

Hint: Dominated convergence theorem.

Exercise 3 (Strong Law of Large Numbers)

Prove the strong law of large numbers for the following experiment:

Throw a fair dice successively (throws are independent), and let X_i denote the value of the i^{th} throw. Show that

$$\frac{1}{n}\sum_{i=1}^{n} X_i \to 3.5 \quad \text{ as } n \to \infty, \text{ almost surely,}$$

by using Birkhoff's Ergodic Theorem for a suitable Bernoulli shift.