Ergodic Theory and Transfer Operators — QUESTION SHEET 7 -

Summer 2015

Exercise 1 (Conditional expectation)

Let (X, \mathcal{B}, μ) be a measure space and $\mathcal{A} \subset \mathcal{B}$ another σ-algebra. Show that
(a) $f \mapsto \mathbb{E}(f \mid \mathcal{A})$ is linear and a contraction in the L^{1}-metric;
(b) if $f \geq 0$, then $\mathbb{E}(f \mid \mathcal{A}) \geq 0$;
(c) if $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex, then $\mathbb{E}(\phi \circ f \mid \mathcal{A}) \leq \phi(\mathbb{E}(f \mid \mathcal{A}))$;
(d) if g is \mathcal{A}-measurable, then $\mathbb{E}(g f \mid \mathcal{A})=g \mathbb{E}(f \mid \mathcal{A})$;
(e) if $\mathcal{F} \subset \mathcal{A}$ is a σ-algebra, then $\mathbb{E}(\mathbb{E}(f \mid \mathcal{A}) \mid \mathcal{F})=\mathbb{E}(f \mid \mathcal{F})$;
(f) $\operatorname{esssup} f \geq \operatorname{esssup} \mathbb{E}(f \mid \mathcal{A})$; and

Hint: For an \mathcal{A}-measurable function f holds esssup $f>M$ for some $M \in \mathbb{R} \Leftrightarrow$ there exists an $A \in \mathcal{A}$ with $\mu(A)>0$ such that $f>M$ a.e. on A.
(g) if $X=[-1,1], \mathcal{B}$ the Borel σ-algebra, μ the Lebesgue measure, and $\mathcal{A}=\{A \in \mathcal{B} \mid A=-A\}$, then $\mathbb{E}(f \mid \mathcal{A})(x)=\frac{1}{2}(f(x)+f(-x))$.

Exercise 2 (The FPO acting on densities)

Let $T:[0,1) \rightarrow[0,1)$ be the circle tripling map $T(x)=3 x \bmod 1$, and let P be the associated FPO (with respect to the Lebesgue measure).
(a) Compute $P f$ and $P^{2} f$ for $f=3 \chi_{[0,1 / 3)}$ and for $f=2 \chi_{[0,1 / 2)}$.
(b) Verify your computations by representing the respective density f through a large number of uniformly distributed initial states which you then iterate once and twice by T, and plot the distribution of the image points.

Exercise 3 (Fixed point of the FPO)

Let $T:[0,1) \rightarrow[0,1)$ be given by $T(x)=4 x(1-x)$, and let P be the associated FPO (w.r.t. Lebesgue). Show that $f^{*}(x)=\frac{1}{\pi \sqrt{x(1-x)}}$ is a fixed point of P.

Exercise 4 (Representation of the FPO)

Let $X \subset \mathbb{R}^{d}, d \in \mathbb{N}$, be a connected open set, and $T: X \rightarrow X$ diffeomorphism; that is T is invertible and both T and T^{-1} are differentiable. Show that the FPO (w.r.t. Lebesgue) associated with T satisfies

$$
P f(x)=f\left(T^{-1}(x)\right)\left|\operatorname{det} D T^{-1}(x)\right|
$$

with D denoting the derivative.

