ERGODIC THEORY AND TRANSFER OPERATORS — QUESTION SHEET 7 —

Summer 2015

Exercise 1 (Conditional expectation)

Let (X, \mathcal{B}, μ) be a measure space and $\mathcal{A} \subset \mathcal{B}$ another σ -algebra. Show that

.

(a) $f \mapsto \mathbb{E}(f|\mathcal{A})$ is linear and a contraction in the L^1 -metric;

- (b) if $f \ge 0$, then $\mathbb{E}(f|\mathcal{A}) \ge 0$;
- (c) if $\phi : \mathbb{R} \to \mathbb{R}$ is convex, then $\mathbb{E}(\phi \circ f | \mathcal{A}) \leq \phi(\mathbb{E}(f | \mathcal{A}));$
- (d) if *g* is \mathcal{A} -measurable, then $\mathbb{E}(gf|\mathcal{A}) = g\mathbb{E}(f|\mathcal{A})$;
- (e) if $\mathcal{F} \subset \mathcal{A}$ is a σ -algebra, then $\mathbb{E}(\mathbb{E}(f|\mathcal{A})|\mathcal{F}) = \mathbb{E}(f|\mathcal{F})$;
- (f) esssup $f \geq \text{esssup}\mathbb{E}(f|\mathcal{A})$; and

Hint: For an A-measurable function f holds $\operatorname{esssup} f > M$ for some $M \in \mathbb{R} \Leftrightarrow$ there exists an $A \in A$ with $\mu(A) > 0$ such that f > M a.e. on A.

(g) if X = [-1, 1], \mathcal{B} the Borel σ -algebra, μ the Lebesgue measure, and $\mathcal{A} = \{A \in \mathcal{B} | A = -A\}$, then $\mathbb{E}(f|\mathcal{A})(x) = \frac{1}{2}(f(x) + f(-x))$.

Exercise 2 (The FPO acting on densities)

Let $T : [0,1) \rightarrow [0,1)$ be the circle tripling map $T(x) = 3x \mod 1$, and let *P* be the associated FPO (with respect to the Lebesgue measure).

- (a) Compute *Pf* and *P*²*f* for $f = 3\chi_{[0,1/3)}$ and for $f = 2\chi_{[0,1/2)}$.
- (b) Verify your computations by representing the respective density *f* through a large number of uniformly distributed initial states which you then iterate once and twice by *T*, and plot the distribution of the image points.

Exercise 3 (Fixed point of the FPO)

Let $T : [0,1) \rightarrow [0,1)$ be given by T(x) = 4x(1-x), and let *P* be the associated FPO (w.r.t. Lebesgue). Show that $f^*(x) = \frac{1}{\pi\sqrt{x(1-x)}}$ is a fixed point of *P*.

Exercise 4 (Representation of the FPO)

Let $X \subset \mathbb{R}^d$, $d \in \mathbb{N}$, be a connected open set, and $T : X \to X$ diffeomorphism; that is T is invertible and both T and T^{-1} are differentiable. Show that the FPO (w.r.t. Lebesgue) associated with T satisfies

$$Pf(x) = f(T^{-1}(x)) |\det DT^{-1}(x)|,$$

with *D* denoting the derivative.