Ergodic Theory and Transfer Operators
 - Question sheet 8 -

Summer 2015

Exercise 1 (Bounded variation)

Show Theorem 3.8A from the lectures; that is:
(a) If f is of BV on $I=[a, b]$, then f is bounded on I; in fact it holds that

$$
|f(x)| \leq f(a)+V_{I} f \quad \forall x \in I
$$

(b) If f is of BV , and $\|f\|_{L^{1}}<\infty$, then

$$
|f(x)| \leq V_{I} f+\frac{\|f\|_{L^{1}}}{b-a} \quad \forall x \in I
$$

Exercise 2 (Transfer operators and the support)

Let $T: X \rightarrow X$ a non-singular transformation, P and U the associated Frobenius-Perron, and Koopman operators, respectively. Further, let $f \in L^{1}(X)$ and $g \in L^{\infty}(X)$. Show that
(a) $\operatorname{supp} U g=T^{-1}(\operatorname{supp} g)$; and
(b) $\operatorname{supp} P f \subseteq T(\operatorname{supp} f)$,
where supp h denotes the support of the function h, i.e. the set $\{h \neq 0\}$ (which is thus defined up to a null set).

Hint: For (b), assume the counterpart, i.e. that $M:=\operatorname{supp} \operatorname{Pf} \backslash$ $T(\operatorname{supp} f) \neq \varnothing$, and consider Pf on subsets of M.
(c) Give an example where the inclusion in (b) is strict.

Exercise 3 (A useful partition)

Let $T:[0,1] \rightarrow[0,1]$ be the tent transformation, i.e.

$$
T(x)= \begin{cases}2 x, & 0 \leq x<\frac{1}{2} \\ 1-2 x, & \frac{1}{2} \leq x \leq 1\end{cases}
$$

Let P be the Frobenius-Perron operator associated with T. Let \mathcal{S} be the set of all functions f of the form $f=\alpha \chi_{\left[0, \frac{1}{2}\right]}+\beta \chi_{\left(\frac{1}{2}, 1\right]}$, where $\alpha, \beta \in \mathbb{R}$.
(a) For $f \in \mathcal{S}$ write $f=(\alpha, \beta)$, whenever $f=\alpha \chi_{\left[0, \frac{1}{2}\right]}+\beta \chi_{\left(\frac{1}{2}, 1\right]}$. Show that $P f=(\alpha, \beta)\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$.
(b) Find an absolutely continuous invariant measure of T.

Exercise 4 (Non-finite invariant measure)

(a) Let $T:[a, b] \rightarrow[a, b]$ be a piecewise monotonic transformation. Prove Proposition 3.7; that is, that the associated Frobenius-Perron operator w.r.t. the Lebesgue measure satisfies

$$
P f(x)=\sum_{z \in T^{-1}(x)} \frac{f(z)}{\left|T^{\prime}(z)\right|} \quad \text { a.e. }
$$

Hint: Generalize the procedure we used in Example 3.3.
(b) Let

$$
T(x)= \begin{cases}\frac{x}{1-x}, & 0 \leq x<\frac{1}{2} \\ 2 x-1, & \frac{1}{2} \leq x \leq 1\end{cases}
$$

Show that $f(x)=\frac{1}{x}$ is a fixed point of P.

