ERGODIC THEORY AND TRANSFER OPERATORS — QUESTION SHEET 9 —

Summer 2015

Exercise 1 (Nonlinear change of coordinates)

Let $T : I \to I$ be non-singular, and let P_T be the Frobenius–Perron operator of T. Let $h : I \to I$ be a diffeomorphism (that is, h is a bijection and both h and its inverse h^{-1} are differentiable on (0, 1)). Let $S : I \to I$ be given by $S(x) = h \circ T \circ h^{-1}(x)$, and let P_S be the Frobenius–Perron operator of S. Show that:

(a) $P_T f = f$ implies $P_S g = g$, where $g = (f \circ h^{-1}) \cdot |(h^{-1})'|$;

For the rest of the problem suppose *f* is a *T*-invariant density.

- (b) Show that *g* is an *S*-invariant density.
- (c) Let μ_f be the measure such that $\frac{d\mu_f}{dm} = f$, and define μ_g similarly. Show that the Lyapunov exponent of the ppt $(I, \mathcal{B}, \mu_f, T)$ coincides with the Lyapunov exponent of the ppt $(I, \mathcal{B}, \mu_g, S)$. (The Lyapunov exponent of a differentiable ppt (X, \mathcal{A}, μ, T) is defined as follows: $\int_X \log |T'(x)| d\mu$.)

Exercise 2 (Change of measure)

Let μ and ν be equivalent probability measures; that is $\mu \ll \nu$ and $\nu \ll \mu$. Show, that if $h \in D(X, \mathcal{B}, \nu)$ is the Radon–Nikodým derivative of μ w.r.t. ν , then for any $f \in L^1(X, \mathcal{B}, \mu)$

$$P_{T,\mu}f=rac{P_{T,
u}(fh)}{h}$$
 ,

where $P_{T,\mu}$ and $P_{T,\nu}$ denote the Frobenius–Perron operator associated with the nonsingular transformation $T: X \to X$ w.r.t. the measures μ and ν , respectively.

Exercise 3 (Variation-decreasing projection)

Let $\mathscr{P} = \{I_1, \ldots, I_n\}$ be a partition of the interval $I \subset \mathbb{R}$, and $\pi_n : L^1 \to V_n$ the linear projection from the lectures from L^1 to $V_n = \operatorname{span}\{\chi_1, \ldots, \chi_n\}$. Show that

 $V_I \pi_n f \leq V_I f$.

Give an example where $V_I f = \infty$ but $V_I \pi_n f < \infty$.