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Measure theory and Lebesgue integration

1 Measures and measure spaces

1.1 Basic definitions and properties

We collect the most basic definitions in measure theory, followed by some results which will be
useful in the lectures.
Definition 1 (Algebra and σ-algebra ): Consider a collection A of subsets of a set X, and the
following properties:

(a) When A ∈ A then Ac := X \ A ∈ A.

(b) When A, B ∈ A then A ∪ B ∈ A.

(b’) Given a finite or infinite sequence {Ak} of subsets of X, Ak ∈ A, then also
⋃

k Ak ∈ A.

IfA satisfies (a) and (b), it is called an algebra of subsets of X; if it satisfies (a) and (b’), it is called
a σ-algebra .

It follows from the definition that a σ-algebra is an algebra, and for an algebra A holds

• ∅, X ∈ A;

• A, B ∈ A ⇒ A ∩ B ∈ A;

• A, B ∈ A ⇒ A \ B ∈ A;

• if A is a σ-algebra , then {Ak} ⊂ A ⇒
⋂

k Ak ∈ A.

Definition 2 (Measure): A function µ : A → [0, ∞] on a σ-algebra A is a measure if

(a) µ(∅) = 0;

(b) µ(A) ≥ 0 for all A ∈ A; and

(c) µ (
⋃

k Ak) = ∑k µ(Ak) if {Ak} is a finite or infinite sequence of pairwise disjoint sets fromA,
that is, Ai ∩ Aj = ∅ for i 6= j. This property of µ is called σ-additivity (or countable additivity).

If, in addition, µ(X) = 1, then µ is called a probability measure.

Definition 3:

(a) IfA is a σ-algebra of subsets of X and µ is a measure onA, then the triple (X,A, µ) is called
a measure space. The subsets of X contained in A are called measurable.

(b) If µ(X) < ∞ (resp. µ(X) = 1) then the measure space is called finite (resp. probabilistic or
normalized).

(c) If there is sequence {Ak} ⊂ A satisfying X =
⋃

k Ak and µ(Ak) < ∞ for all k, then the
measure space (X,A, µ) is called σ-finite.



A set N ∈ A with µ(N) = 0 is called a null set. If a certain property involving the points of a
measure space holds true except for a null set, we say the property holds almost everywhere (we
write a.e., which, depending on the context, sometimes means “almost every”). We also use the
word essential to indicate that a property holds a.e. (e.g. “essential bijection”).
Theorem 4 (Hahn–Kolmogorov extension theorem): Let X be a set, A0 an algebra of subsets
of X, and µ0 : A0 → [0, ∞] a σ-additive function. If A is the σ-algebra generated1 by A0, there
exists a measure µ : A → [0, ∞] such that µ

∣∣
A0

= µ0. If µ0 is σ-finite, the extension is unique.

Definition 5 (Cylinder): Let Ak be a σ-algebra for k ∈ N. Let k1 < k2 < . . . < kr be integers
and Aki

∈ Aki
, i = 1, . . . , r. A cylinder set (also called rectangle) is set of the form

[Ak1 , . . . , Akr ] =
{
{xj}j∈N

∣∣xki
∈ Aki

, 1 ≤ i ≤ r
}

.

Definition 6: Let (Xi,Ai, µi), i ∈ N, be normalized measure spaces. The product measure space
(X,A, µ) = ∏i∈Z(Xi,Ai, µi) is defined by

X = ∏
i∈N

Xi and µ
(
[Ak1 , . . . , Akr ]

)
=

r

∏
j=1

µkj
(Akj

).

An analogous definition holds if we replace N by Z, i.e. if X consists of bi-infinite sequences.

One can see that finite unions of cylinders form an algebra in of subsets of X. By Theorem 4 it
can be uniquely extended to a measure on A, the smallest σ-algebra containing all cylinders.
It is often necessary to approximate measurable sets by sets of some sub-class (e.g. an algebra)
of the given σ-algebra :
Theorem 7: Let (X,A, µ) be a probability space, and let A0 be an algebra of subsets of X gene-
rating A. Then, for each ε > 0 and each A ∈ A there is some A0 ∈ A0 such that µ(A∆A0) < ε.
Here, E∆F := (E \ F) ∪ (F \ E) denotes the symmetric difference of E and F.

1.2 The monotone class theorem

Definition 8: As sequence of sets {Ak} is called increasing (resp. decreasing) if Ak ⊆ Ak+1 (resp.
Ak ⊇ Ak+1) for all k.
The notation Ak ↑ A (resp. Ak ↓ A) means that {Ak} is an increasing (resp. decreasing) sequence
of sets with

⋃
k Ak = A (resp.

⋂
k Ak = A).

Definition 9 (Monotone class): Let X be a set. A collectionM of subsets of X is a monotone class
if whenever Ak ∈ M and Ak ↑ A, then A ∈ M.

Theorem 10 (Monotone Class Theorem): A monotone class which contains an algebra, also
contains the σ-algebra generated by this algebra.

2 Lebesgue integration

Definition 11 (Borel σ-algebra / measure): Let X be a topological space. The smallest σ-algebra
containing all open subsets of X is called the Borel σ-algebra . If A is the Borel σ-algebra , then a
measure µ on A is a Borel measure if the measure of any compact set is finite.

Definition 12 (Measurable function): Let (X,A, µ) and (Y,B, ν) be measure spaces, and f :
X → Y a function. We call f measurable, if f−1(B) ∈ A whenever B ∈ B.

Lebesgue integration is concerned with integrals of measurable functions where Y = R (or C)
and B is the Borel σ-algebra on R. For a detailed construction of the Lebesgue integral we refer
to any textbook on measure theory.

1The σ-algebra generated by a collection A0 of subsets of X, also denoted by σ(A0), is the smalles σ-algebra contai-
ning A0, i.e.

σ(A0) =
⋂

A is a σ-algebra with A0⊆A
A.

Analogously we can define the algebra of subsets of X generated by some collection of subsets of X.



We merely note, that a bounded measurable function f can be approximated to arbitrary accu-
racy by simple functions of the form fn = ∑n

i=1 λiχAi , where λi ∈ R, and the Ai are disjoint mea-
surable sets. Here, χA denotes the characteristic function of A, i.e. the function with χA(x) = 1
for x ∈ A and χA(x) = 0 for x /∈ A. The (Lebesgue) integral of simple functions is given by

∫
fn dµ :=

n

∑
i=1

λiµ(Ai),

and f is called (Lebesgue) integrable if for any convergent approximations of it by simple func-
tions fn the limit limn→∞

∫
fndµ exists and is unique.

Definition 13 (Lp space): For p ∈ (0, ∞) the space Lp
µ(X) (sometimes also denoted as Lp(X, µ))

consists of the equivalence classes2 of measurable functions f : X → C such that
∫
| f |p dµ <

∞. For p ≥ 1, the Lp norm is defined by ‖ f ‖p = (
∫
| f |pdµ)1/p. The space L∞

µ (X) consists of
equivalence classes of essentially bounded functions.

If µ is finite, then L∞
µ (X) ⊂ Lp

µ(X) for every p > 0. Here is a connection between Lp functions
and continuous functions.
Theorem 14: If X is a topological space and µ is a Borel measure on X, then the space C0(X, C)

of continuous, complex-valued, compactly supported functions on X is dense in Lp
µ(X) for all

p > 0.

Hölder’s inequality gives another connection between functions in Lp spaces: if p ∈ [1, ∞] and q
are such that 1/p + 1/q = 1 (with the convention 1/∞ = 0), f ∈ Lp

µ(X), and g ∈ Lq
µ(X), then

one has ∫
| f g| dµ = ‖ f g‖1 ≤ ‖ f ‖p‖g‖q.

For p = 2 the norm ‖ · ‖2 comes from the inner product

〈 f , g〉 =
∫

f g dµ,

therefore L2
µ(X) is a Hilbert space.

For sequences of functions we have the following results concerning interchangeability of inte-
gration and limits.
Theorem 15 (Fatou’s lemma): For a sequence { fn} of non-negative measurable functions, defi-
ne f : X → [0, ∞] as the a.e. pointwise limit

f (x) = lim inf
n→∞

fn(x).

Then, f is measurable and ∫
f dµ ≤ lim inf

n→∞

∫
fn dµ .

Theorem 16 (Lebesgue dominated convergence theorem): Let f : X → [−∞, ∞], g : X → [0, ∞]
be measurable functions, and fn : X → [−∞, ∞] be measurable functions such that | fn(x)| ≤
g(x) and fn(x)→ f (x) as n→ ∞ a.e. If g is integrable, then so are f and the fn, furthermore

lim
n→∞

∫
fn dµ =

∫
f dµ .

Note that non-negative integrable functions define finite measures: Let f : X → [0, ∞] be integ-
rable, then µ f : A → [0, ∞], defined via

µ f (A) :=
∫

A
f dµ =

∫
f χA dµ

is a measure. Here is the converse result:
2Two measurable functions are equivalent if they coincide up to a set of measure zero.



Theorem 17 (Radon–Nikodym): Let (X,A, µ) be a finite measure space, and ν : A → [0, ∞)
a second measure with the property3 ν(A) = 0 whenever µ(A) = 0. Then there exists a non-
negative integrable function f : X → [0, ∞] such that

ν(A) =
∫

A
f dµ .

Theorem 18 (Fubini): Let (X,A, µ) be the product of the measure spaces (Xi,Ai, µi), i = 1, 2,
and let a µ-integrable function f : X → R be given. Then, for a.e. x1 ∈ X1 the function x2 7→
f (x1, x2) is µ2-integrable. Furthermore, the function

x1 7→
∫

X2

f (x1, x2) dµ2(x2)

is µ1-integrable, and∫
X1

(∫
X2

f (x1, x2) dµ2(x2)

)
dµ1(x1) =

∫∫
X

f (x1, x2) dµ(x1, x2) .

3We say ν is absolutely continuous with respect to µ, in shorthand ν� µ, iff (µ(A) = 0)⇒ (ν(A) = 0).


