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1 Where do Partial Differential Equations
Come from?

1.1 Variational Principle

1.1.1 Deflection of a Membrane

We consider a membrane (thin plate without bending-stiffness) under strain by a vertically
acting force. At the boundary, the membrane is fixed by a planar frame. The for the
mathematical formulation essential quantities are

deflection : u (m)
force density : f (Newton/m2) (acting in direction u).

We represent the membrane by a set Ω ⊂ IR2. In the following Ω shall always be a domain,
that is

Ω is open and connected

with sufficiently smooth boundary (i.e. Ω Riemann-measurable). Now we check how big the
deflection u(x) in every point x = (x1, x2) ∈ Ω ⊂ IR2 with a given force density f will be.
First, the fixation forces the following boundary condition:

u(x) = 0 ∀x ∈ ∂Ω .

In order to characterize u, we use the Principle of Minimal Energy: The deflection u
has the property

u ∈ H : J(u) ≤ J(v) ∀v ∈ H . (1.1)

Where H is the set of all allowed deflections, and J(v) the energy of a deflection v ∈ H.
We gain the energy functional J : H → IR from the following energy balancing. For now, v
shall be an arbitrary, smooth enough function on Ω.

• The strain energy J1(v) is proportional to the change of area of the surface.

Surface area of Ω :
∫

Ω 1 dx

Surface area after deflection v :
∫

Ω

√
1 + v2

x1
+ v2

x2
dx

So altogether we have

J1(v) = α

∫
Ω

(√
1 + v2

x1
+ v2

x2
− 1
)
dx .

1
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(1+v’   )    dx
2 1/2

u(x)

ba
x

dx

dx

v
v’ dx

v

Figure 1.1: Calculation of the arc length l(a, b) of the graph of a function v = v(x) as

l(a, b) =
∫ b
a

√
1 + v′(x)2 dx. Here v′ = vx is the derivative of v. The two-

dimensional generalization yields the above formula for surfaces after deflection.

The material constant α > 0 is called elasticity of Ω. Under certain conditions one can
simplify this expression: For small deflections ∇v is√

1 + v2
x1

+ v2
x2
− 1

.
= 1 +

1

2
(v2
x1

+ v2
x2

)− 1 =
1

2
(v2
x1

+ v2
x2

) .

This yields

J1(v)
.
=

1

2

∫
Ω

α |∇v|2 dx .

• As potential energy (= force × path) J2(v) one gains

J2(v) = −
∫
Ω

fv dx .

• The resulting total energy J(v) = J1(v) + J2(v) is

J(v) =
1

2

∫
Ω

α |∇v|2 dx−
∫
Ω

fv dx .

We will come across the following function spaces (linear IRvector spaces) frequently in this
lecture.

Definition 1.1 Suppose Ω the closure of Ω. Then we set:

C(Ω) := {v : Ω→ IR | v continuous on Ω}
C(Ω) := {v ∈ C(Ω) | v continuously extendable on Ω}

Cm(Ω) := {v ∈ C(Ω) | ∂γv ∈ C(Ω), |γ| ≤ m}
Cm(Ω) := {v ∈ C(Ω) | ∂γv ∈ C(Ω), |γ| ≤ m}
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For convenience reasons we set the higher derivatives ∂γ to be

∂γ =
∂k

∂xγ1 . . . ∂xγk
, γi = 1, 2, |γ| = k

using the multi index γ. In the case Ω ⊂ IRd, γi ∈ 1, . . . , d.

From the data f we require

f ∈ C(Ω) .

A glance at the energy functional J suggests to choose (1.1) the linear space

HC := {v ∈ C1(Ω) | v|∂Ω = 0} .

as solution space H for our minimization problem. Then, on the one hand, the fixation
condition is fulfilled, and on the other hand

J(v) <∞ ∀v ∈ HC .

We will later see, that, in the sense of a complete existence theory, it is an advantage to
allow larger spaces H.

Theorem 1.2 (variational formulation) A function u ∈ HC is a solution of (1.1) with H =
HC if and only if it fulfills the variational equation

∫
Ω

α∇u · ∇v dx =

∫
Ω

fv dx ∀v ∈ HC . (1.2)

Proof:
First consider u ∈ HC to be a solution of the minimization problem (1.1) and choose an arbitrary v ∈ HC
and t > 0. Now, J(u) ≤ J(u+ tv), because u minimizes the functional J , so

0 ≤ J(u+ tv)− J(u) = t

(∫
Ω

α∇u · ∇v dx−
∫
Ω

fv dx

)
+ t2

1

2

∫
Ω

α|∇v|2 dx .

Dividing by t and letting t→ 0 we get ∫
Ω

α∇u · ∇v dx ≥
∫
Ω

fv dx .

The inverse estimate follows analogously by choosing t < 0.
Now consider u ∈ HC to fulfill the variational equation (1.2), then for arbitrary v ∈ HC

J(u+ v)− J(u) =

∫
Ω

α∇u · ∇v dx−
∫
Ω

fv dx+
1

2

∫
Ω

α|∇v|2 dx ≥ 0 .

Note:
In Theorem 1.2 there is nothing said about the existence of u. /
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Note:
For every set u ∈ HC by

J ′(u)(v) =

∫
Ω

(α∇u∇v − fv) dx, v ∈ HC

defines a linear mapping from HC to IR. If one now sets

‖v‖1 =

∫
Ω

(v2 + |∇v|2) dx

1/2

then it follows naturally, that

|J(u+ v)− J(v)− J ′(u)(v)| = 1

2

∫
Ω

α|∇v|2 dx ≤ 1

2
α‖v‖21 .

Thereby J ′(u) is precisely the Fréchet derivative of J in u. The variational formulation (1.2)
suggests, that the minimum of J is to be found in u just as J ′(u) vanishes. /

So we have cleared the relation between the minimization problem (1.1) and the variational
formulation (1.2). Next, we want to derive a relation between these formulations and a
partial differential equation (PDE). For this we need

Theorem 1.3 (Green’s formula, partial integration) Let v, w ∈ C1(Ω) and ∂Ω be smooth
(sufficient: ∂Ω has a continuous differentiable parametrization). Then

∫
Ω

vxiw dx = −
∫
Ω

vwxi dx+

∫
∂Ω

vw ni dσ i = 1, 2 , (1.3)

where n = (n1, n2) is the outward-oriented normal on ∂Ω.

Proof:
Exercise. 2

For simplicity we will call a domain where Green’s formulas (1.3) hold Green domain.

Note:
Compare this to the product rule from Calculus

b∫
a

vw′ dx = −
b∫
a

v′w dx+ vw|ba

for v, w ∈ C1[a, b]. /
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Theorem 1.4 Let Ω be a Green domain. A function u ∈ C2(Ω) is a solution to the
minimization problem (1.1) if and only if it is a solution to the boundary value problem

−α∆u(x) = f(x) ∀x ∈ Ω
u(x) = 0 ∀x ∈ ∂Ω .

(1.4)

Proof:
Suppose u ∈ C2(Ω) to be a solution of the minimization problem. Using Theorem 1.2 it suffices that u fulfills
the variational equation (1.2). Green’s formula yields∫

Ω

(−α∆u− f)v dx = 0 ∀v ∈ HC . (1.5)

In contradiction to the claim, we assume that there is a x0 ∈ Ω, s.t.

−α∆u(x0)− f(x0) > 0 .

Since Ω is open and −α∆u− f is continuous in Ω, we can find an open neighbourhood U(x0) of x0, s.t.

−α∆u(x)− f(x) > 0 ∀x ∈ U(x0) .

But now we can construct a negative function v ∈ HC with the property

v(x) > 0 ∀x ∈ K̄ε(x0) ⊂ U(x0), v(x) = 0 ∀x ∈ Ω \ U(x0) .

Here, K̄ε(x0) is the closed ball around x0 with radius ε > 0. Inserting such a function v in (1.5) leads to a
contradiction. Analogously one can argument in the case −α∆u(x0)− f(x0) < 0.

If conversely u ∈ C2(Ω) is a solution of the BVP, then by multiplying of the differential equation with an
arbitrary v ∈ HC , integrating over Ω and applying Green’s formula, u fulfills the variational equation (1.2)2

Note:
The differential equation −∆u = f is called Poisson’s equation. In variational calculus, one
calls (1.4) Euler’s differential equation of the minimization problem (1.1). /

Note:
Observe that the equivalence of minimization and boundary value problem are only true
under an additional regularity assumption. Particularly, it can happen that (1.1) has a
(physically reasonable!) solution, whereas (1.4) has no solution. /

1.1.2 Potential Equation

On a bounded subset Ω ⊂ IR3 with a given charge density f we want to determine the
potential u.

electric potential : u (Volt)
charge density : f (As/m3)
applied voltage : u|∂Ω = g (Volt)
dielectric constant : ε (As/Voltm)
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Following the Principle of Minimal Energy and a correspondent energy balance the solution
is characterized by the minimization problem

u ∈ H : J(u) =
1

2

∫
Ω

ε |∇u|2 dx−
∫
Ω

fu dx ≤ J(v) ∀v ∈ H .

Under appropriate regularity assumptions on the applied voltage g one could consider as the
solution set H = HC ,

Hg
C := {v ∈ C1(Ω) | v|∂Ω = g} .

Notice that this solution set is no linear space. Similar as above, one can derive a variational
formulation (How?). From this, one gains under an additional regularity condition the
corresponding Euler differential equation

−div(ε∇u) = f in Ω

together with boundary conditions (Which?). In the case f = 0 this is called potential
equation.

Note:
Again, we derived the potential equation only under certain smoothness conditions a poste-
riori. The original problem was a minimization problem. /

1.2 Conservation Principle

1.2.1 Mass Conservation, Diffusion and Convection

We consider the movement of a fluid in a given domain Ω ⊂ IR3.

density : % (kg/m3)
velocity : v (m/s)
source density : f (kg/(sm3))

As a foundation for the mathematical description of this situation, we use the Principle of
Mass Conservation: In every fixed control volume Ω′ ⊂ Ω the following mass equilibrium
holds

mass change in time = – mass outflow + mass inflow.

If mass is flowing into Ω′, then we have a negative mass outflow, so outflow = – inflow.
Similarly, a sink is to be interpreted as a negative source.
So let Ω′ ⊂ Ω be such a control volume with smooth enough boundary ∂Ω′. We want to
express the change in mass, inflow and outflow in the period from t to t + ∆t through the
function %, v and f .

• Mass change in time: ∫
Ω′

%(x, t+ ∆t) dx−
∫
Ω′

%(x, t) dx .
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• Mass outflow: Mass escapes through a small piece of ∂Ω′ with area b = ∆σ in normal
direction n (directed outwards!) with the velocity (n ·v)n. The velocity v is considered
to be constant on that piece. Then, the escaping mass covers in the time interval ∆t
the distance

a = n · v ∆t .

Thereby, at this time, a cuboid of the volume

ab = n · v ∆σ ∆t

escapes the volume Ω′ (see figure 1.2).

Ω′

∂Ω′

1v

-
(n · v)n

1v

a

b

Figure 1.2: flow through the boundary of Ω′

So through this surface patch the following mass flows out

%n · v ∆σ ∆t .

Summing up and going to the limit, the mass outflow through all ∂Ω′ becomes the
surface integral

∆t

∫
∂Ω′

%n · v dσ .

• Source:

If the source density f is constant in the time interval ∆t, then the mass change in Ω′

in this period is given by ∫
Ω′

f(x, t)∆t dx .

Then the overall mass change in the period ∆t becomes

1

∆t

∫
Ω′

%(x, t+ ∆t) dx−
∫
Ω′

%(x, t) dx

 = −
∫
∂Ω′

%v · n dσ +

∫
Ω′

f dx .

Going to the limit ∆t→ 0, this leads to the mass conservation in integral form:

d

dt

∫
Ω′

% dx+

∫
∂Ω′

%v · n dσ =

∫
Ω′

f dx ∀Ω′ ⊂ Ω . (1.6)
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In the stationary case, this becomes∫
∂Ω′

%v · n dσ =

∫
Ω′

f dx ∀Ω′ ⊂ Ω . (1.7)

Now we want to express the mass conservation equation in differential form, which in this
case is as a partial differential equation. The essential tool is again Green’s formula (Thm.
1.3). A direct consequence of this is

Theorem 1.5 (Divergence Theorem) Suppose Ω′ ⊂ IR3 a Green domain and v = (v1, v2, v3)T

a vector field in Ω′ with vi ∈ C1(Ω′), i = 1, 2, 3, abbreviated v ∈
(
C1(Ω′)

)3
. Then:

∫
Ω′

div v dx =

∫
∂Ω′

(v · n) dσ .

Theorem 1.6 (Continuity Equation) Choose an arbitrary t ∈ IR+. Under the regularity
assumptions

(%v)i(·, t) ∈ C1(Ω), i = 1, 2, 3, %t(·, t) ∈ C(Ω), f(·, t) ∈ C(Ω)

the functions %, v and f fulfill the integral conservation equation (1.6) for all Ω′ ⊂ Ω if and
only if they fulfill the continuity equation

%t + div(%v) = f in Ω . (1.8)

Proof:
First, consider the integral equation (1.6) to be true. Contradictory to the claim, suppose for a certain x0 ∈ Ω,

%t(x0, t) + div(%v)(x0, t)− f(x0, t) > 0 .

Since Ω open and %t + div(%v)− f continuous in Ω, there is an open ball Kε(x0), s.t Kε(x0) ⊂ Ω and

%t(x, t) + div(%v)(x, t)− f(x, t) > 0 ∀x ∈ Kε(x0) .

We choose a control volume Ω′ = Kε(x0). Applying the divergence theorem (1.6), this yields

d

dt

∫
Ω′

% dx+

∫
Ω′

(div(%v)− f) dx = 0 .

By the premises, %t is uniformly continuous in Ω′ and thereby we are allowed to interchange differentiation
and integration. Thus ∫

Ω′

(%t + div(%v)− f) dx = 0 .

But from the construction, the integrand is larger than 0 on Ω′ = Kε(x0). That is a contradiction.
The converse follows directly from the divergence theorem. 2

Note:
Observe, that again integral and differential form are equivalent only under additional reg-
ularity assumptions. So the use of (1.8) in place of (1.6) means a restriction. Particularly,
there can be (physically sensible!) solutions to (1.6), whereas the differential equation (1.8)
has no solution. /
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In many problem cases the source density f is not known. Unfortunately, the unknown
functions v and % are left over, that cannot be uniquely determined from just one equation.
To the (indisputable) Principle of Mass Conservation, there are additional material equations
or equation of state added, which describe the present mass flux closer. The form of these
equations of state is a question of physical modelling, that aims for a viable mathematical
description of the whole problem, but that, from a mathematical point of view, constitutes
a (at first sight) completely arbitrary additional condition. This condition usually is only
under certain physical premisses true, and therefore in general to be handled with caution!
We introduce a dimensionless concentration u and set

% = %0u , %0 = const. > 0 .

The fundamental transportation processes are diffusion and convection.

Diffusion: Ficks’ Law (1855)
%v = −α∇u, α > 0

In words: The mass flux is proportional to the steepest decent of the concentration.

Convection:

%v = ~βu, ~β = const.

In words: The expansion velocity v = ~β/%0 is fixed.

Convection–Diffusion:

%v = −α∇u+ ~βu

In words: Both phenomena coincide.
Applying this to the conservation equation (1.8), we gain

%0ut = div(α∇u− ~βu) + f .

In general, α, ~β are functions depending on x and u! In the case α, ~β = const., this becomes
the convection–diffusion equation:

%0ut = α∆u− ~β∇u+ f .

Note:
From the conservation of mass and momentum together with the equation of state for so
called incompressible fluids with constant density, this yields the Navier–Stokes Equations

~ut + (~u · ∇)~u+∇p = f + ε∆~u
∇ · ~u = 0

in Ω .

There ε stands for the viscosity of the fluid, ~u = (u1, u2, u3)T for the velocity and p for the

pressure. The Laplace operator ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

and (~u · ∇) = u1
∂
∂x1

+ u2
∂
∂x2

+ u3
∂
∂x3

are applied component-wise. Under the (severe!) simplification:
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• known flux direction ~β · ∇ = ~u · ∇ and

• known pressure p

one gains the convection–diffusion equation for every component ui. /

Apparently, one can expect a unique solution only if one describes concentration and mass
flux at the boundary appropriately. The most common boundary conditions (BC) are

Dirichlet boundary condition:

% = %0u = g on ∂Ω .

In words: prescription of the density resp. the concentration.

Von Neumann boundary condition:

%v · n = g on ∂Ω

with outward pointing normal n on ∂Ω.
In words: Prescription of the mass outflow.

Cauchy boundary condition:

%v · n = αu on ∂Ω .

In words: The mass outflow is proportional to the concentration.
Instead of Cauchy BC one sometimes also speaks of Robin boundary condition. Dirichlet-,
von Neumann- and Cauchy BC are also called boundary conditions of 1st, 2nd, and 3rd kind,
respectively.

Note:
Of course, one can also prescribe different boundary conditions on different parts of ∂Ω.
In addition to these standard types of there might be other boundary conditions reasonable.
As an example for a non-local boundary condition consider the (global) mass conservation∫

∂Ω

%v · ndσ = 0 .

Note:
Similarly to the equations of state, the boundary equations are supposed to describe spe-
cial physical situations. Mathematically reasonable BC’s together with present (differential)
equations provide existence and uniqueness of a solution. The choice of physically and
mathematically reasonable boundary conditions in the practical application is anything but
easy. /



1.2 Conservation Principle 11

Naturally the concentration u(x, t) depends on the situation at the initial time t = 0. So we
can expect a unique solution u, we have to choose an initial condition (IC)

u(x, 0) = u0(x) x ∈ Ω .

1.2.2 Conservation of Energy (Heat Equation)

Additionally to mass there are other quantities that are conserved, for example energy. We
consider the example of the heat flow in a domain Ω ⊂ IR3, described by the following
quantities.

energy density : E Joule/(m3)
heat flow : q Joule/(m2 s)
heat source : f Joule/(m3 s)

Exactly as in part 1.2.1 one gets the energy conservation in integral form:

d

dt

∫
Ω′

E dx+

∫
∂Ω′

q · n dσ =

∫
Ω′

f dx ∀Ω′ ⊂ Ω .

Under certain regularity assumptions (cf thm. 1.6) this is equivalent to the continuity
equation:

Et + div q = f in Ω .

As a first equation of state, we postulate

E = E(θ) = cθ,

where θ and c > 0 stand for the temperature and the specific heat (capacity) respectively.
A (simple, but for example near absolute zero completely wrong!) connection between heat
flow and temperature provides the following equation of state.

Fourier’s Law (1822):
q = −κ∇θ .

The proportionality constant κ > 0 is called thermal conductivity. Fourier’s Law describes
heat conduction as diffusion. In its differential form, this becomes the heat equation:

∂

∂t
(cθ) = div(κ∇θ) + f .

In general, c, κ are functions depending on x and u. If these functions are constant, the heat
equation simplifies to

θt = γ∆θ + g with γ =
κ

c
, g =

f

c
.
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Note:
We will briefly discuss the heat conduct in a time variable medium, that is

x = x(t), x ∈ Ω .

The velocity at a point x = x(t) then is ~β = ẋ(t). In this case, following the chain rule one
gets a convection–diffusion Equation

∂

∂t
θ(x(t), t) = ~β · ∇θ + θt = γ∆θ + g .

Observe that the convection ~β · ∇Θ is caused by the movement of the medium.
Again, one has to choose boundary and initial conditions. What physical meaning do Dirich-
let, Neumann and Cauchy BC have in this case? /

1.2.3 Groundwater Flow in Saturated Soil

The groundwater flow through a domain Ω ⊂ IR3 can be described by the following quantities.

density : % kg/m3

porosity : n dimensionless
saturation : S dimensionless
distance velocity : v m/s
filtration velocity : vF m/s
pressure : p Newton/m2

source density : f (kg/m3 s)

The porosity n(x), x ∈ Ω describes the content of pore space in an (infinitesimal) reference
volume. The saturation S(x, t) describes the content of fluid in the pore space. Then the
mass conservation in differential form is:

(Sn%)t + div(Sn%v) = f . (1.9)

Again, a number of equations of state are necessary. We wanted to consider a saturated flow,
so

S(x, t) ≡ 1 ∀x ∈ Ω, t > 0 .

Furthermore, temperature differences shall be ignored. Then

%(x, t) ≡ %0 = const. ∀x ∈ Ω, t > 0,

because water is incompressible. The porosity is a function of the pressure, so

%0
∂(n(p))

∂t
= %0

dn

dp
pt

Now let us assume, that

%0
dn

dp
=
S0

g
= const., (1.10)

where g denotes the gravitational acceleration (unit m/s2) and S0 the specific storage (unit
1/m). In an extensive study of the wells of Dijon, Henry Darcy found the equation of state
for the filtration velocity.
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Darcy’s Law (1856):

vF = −K∇h

The symmetric 3×3-matrix K with columns Ki, i = 1, . . . , 3, is called hydraulic conductivity
and describes the soil’s permeability. The function h is called piezometric or (total) hydraulic
head and can be observed as the level of groundwater in a borehole. This reads

h =
p

%0g
+ x3 .

Finally we suggest, that the (microscopic) distance velocity v correlates to the (macroscopic)
filtration velocity vF in the following way.

vF = nv

Applying all these relations to (1.9), we finally obtain Darcy’s Equation:

S0pt = div(K∇p) + %0g divK3 + gf . (1.11)

Note:
Instead of the situation described by the equation of state (1.10), we might also have a
pressure-stable grain structure given, that is

dn

dp
= 0 .

In this case, Darcy’s Equation (1.11) reduces to

−div(K∇p) = %0g divK3 + gf .

Note:
We had assumed S(x, t) ≡ 1 and K = K(x). In the case of unsaturated currents everything
becomes more complicated, namely S(x, t) 6= 1 and K = K(p, x). To eliminate the un-
known saturation S from the differential equation, one uses in empirically acquired pressure–
saturation relations to obtain a non-linear differential equation, the so called Richards Equa-
tion.

Prescribed pressure–saturation relations are only valid under certain conditions. If those
are not fulfilled, one has to pass on to even more complex models, consisting of to separate
non-linear differential equations for pressure and saturation. With such multiphase flows,
we are quite close to current research. /

Now some appropriate boundary conditions are missing. What physical meaning do
Dirichlet, Neumann and Cauchy BC have in this case?



14 1 Where do Partial Differential Equations Come from?

1.2.4 Conservation of Momentum (Wave Equation)

Up until now the we focussed on the continuity equation. Finally the Principle of Con-
servation of Momentum:

The increase of momentum in a given material control
volume is equal to an outside force acting on it.

By the way: The conservation of momentum is also reflected in its measuring units (reminder:
1 Newton = 1 kg m/s2). For every control volume Ω′ ⊂ Ω ⊂ IRd (with smooth enough
boundary), this physical law can be written directly as a formula,

d

dt

∫
Ω′

%v dx =

∫
Ω′

f dx+

∫
∂Ω′

σ · nds .

Here we have used the following quantities.

density : % kg/md

velocity : v m/s
volume force density : f Newton/md

stress tensor : σ Newton/md−1

Again one can reformulate this balance equation (under additional regularity conditions)
into a differential equation (which one?).
Now, we want to use the conservation of momentum to describe a vibrating string (without
gravitation and bending-stiffness). The string shall be fixed at a and b and we are interested
in its deflection at every time t > 0:

u : [a, b]→ IR .

In this (one dimensional) case the momentum balancing takes the form (cf. figure 1.3)

d

dt

x1∫
x0

%v dx =

x1∫
x0

f dx+ σ(x1)− σ(x0) ∀x0, x1, a ≤ x0 < x1 ≤ b .

We now have to determine %, v, f and σ. Gravitational forces shall be omitted, so

f ≡ 0 .

For vertical oscillations, it holds
v = ut .

For the stresses σ(x0) and σ(x1) we again need an equation of state. To this end we define
a function L : [a, b]→ IR as

L(x) = Length of the curve Γ
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a b
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Figure 1.3: oscillating string

with Γ(x) = {(s, u(s)) ∈ IR2 | s ∈ [a, x]} .

The change in length dL
dx is, as you might know,

dL

dx
(x) =

d

dx

x∫
0

√
1 + u2

x(s) ds =
√

1 + u2
x(x)− 1 .

For an elastic string Hooke’s Law comes into effect:

σ = α
dL

dx
.

The proportionality constant α > 0 is called elasticity and depends on the material and
thereby in general on the position. We want to limit ourselves to small distortions ux ≈ 0.
Then

dL

dx

.
= 1

2ux .

Thereby Hooke’s Law implies the following linear equation of state

σ =
1

2
αux .

Applying all these relations, this provides

d

dt

x1∫
x0

%ut dx = 1
2

(
α(x1)ux(x1)− α(x0)ux(x0)

)
∀x0, x1 a < x0 < x1 < b .

Under appropriate regularity conditions on the solution u and the data %, α, we obtain in
the usual way the wave equation:

(%ut)t =
1

2
(αux)x in (a, b) .
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In the case %, α = const. the wave equation simplifies with γ = α
2% to

utt − γuxx = 0 in (a, b) .

To this, there are for example Dirichlet boundary conditions added:

u(a, t) = ua(t) u(b, t) = ub(t) t > 0 .

By the way, what physical meaning do von Neumann BCs have? Are Cauchy BCs physically
sensible?
Naturally the string’s motion depends crucially on how the deflection looks at time t = 0
and what velocity it has at that time. To expect a unique solution, we presumably have to
choose the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (a, b) .

1.2.5 Traffic Flow (Car Conservation)

traffic density : % cars/m
velocity : v m/s

right at the beginning we state the continuum hypothesis

% : [a, b]→ IR .

Despite a growing traffic volume, this is in the present case at least questionable. That alone
is a reason not to take this model to serious. Similarly to the conservation of mass one gains
the conservation of cars:

%t + (%v)x = 0

Apparently
0 ≤ %(x) ≤ %max = const. .

In the case % = %max, the cars are driving bumper-to-bumper. Furthermore, we assume a
somewhat sensible driving manner, that is

0 ≤ v(x) ≤ vmax = const.

Interpolating both extreme cases v = 0 (in the case % = %max) and v = vmax (in the case
% = 0) just linearly, one obtains the equation of state

v(%) = vmax(1− %/%max) .

Applying this yields a nonlinear conservation law:

%t + vmax(%(1− %/%max))x = 0 .



2 Elliptic, Parabolic, Hyperbolic

2.1 The Cauchy Problem

We consider the following differential equation of second order in two variables x and y

auxx + 2buxy + cuyy = d. (2.1)

The differential equation (2.1) is called

quasi-linear, if a, b, c, d = a, b, c, d(x, y, u, ux, uy)
semi-linear, if a, b, c = a, b, c(x, y), d = d(x, y, u, ux, uy)
linear, if a, b, c, d = a, b, c, d(x, y).

In any case, a, b, c should not vanish all at the same time (2nd order!). Note that linear
combination are solutions again only in the linear case.
We now want to examine the existence of solutions to (2.1).We have already seen, that we can
expect uniqueness only under some additional conditions. Since these differential equations
are of second order, conditions on the function and its first derivative seem reasonable, that
is

u|γ = u0

ux|γ = g1

uy|γ = g2 .

Here γ = (γ1, γ2) shall be a smooth curve in IR2 (more specific: γ1, γ2 ∈ C∞(I), I ⊂ IR,
interval) with a tangent γ′ = (γ′1, γ

′
2) of length

√
(γ′1)2 + (γ′2)2 > 0. A closer look shows,

that the solution is overdetermined by these conditions. This is due to the compatibility
condition

d

ds
u0(γ1(s), γ2(s)) = g1γ

′
1 + g2γ

′
2 .

So there are only two conditions free to choose!1 So we should not, for example, appoint
conditions for ux|γ and uy|γ , but instead for the normal derivative w.r.t. γ:

∂u

∂n
= ∇u · (γ′)⊥ =

−uxγ′2 + uyγ
′
1√

γ′1
2 + γ′2

2

We thus consider the Cauchy problem

auxx + 2 buxy + cuyy = d in IR2

u = u0 on γ
∂u

∂n
= u1 on γ .

(2.2)

1One can see this by differentiation following the chain rule and insertion of ux|γ = g1 and uy|γ = g2.

17
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The conditions on γ shall be assumed to be continuous, so

lim
(x,y)→γ(s0)

u(x, y) = u0(γ(s0)) .

Note that, with the help of the compatibility conditions, the partial derivatives ux|γ and
uy|γ can be calculated from the function’s value and its normal derivative. A (good!) idea
for the proof of existence would be a Taylor expansion of the solution u in a neighbourhood
of γ, i.e.

u(x, y) = u(γ(s0)) +
∞∑
k=1

∑
|β|=k

1

β!
∂βu(γ(s0))hβ ∀x, y ∈ Kε(γ(s0)) .

Here, β = (β1, . . . , βk), βi ∈ {x, y}, i = 1, . . . , k, denotes a multi-index with |β| = k,

∂β = ∂β1 · · · ∂βk , hβ = hβ1 · · ·hβk , hx = x− γ1(s0), hy = y − γ2(s0)

and β! = βx!βy!. Finally, βx and βy shall be the number of indices βi = x and βi = y
respectively.
So, in order to determine u, we need the higher derivatives ∂βu of u on γ. The first-order
derivatives ux and uy, we already have. Now we have to take care of the second-order
derivatives. The chain rule provides

d

ds
ux = γ′1uxx + γ′2uxy

d

ds
uy = γ′1uxy + γ′2uyy ,

and we already have
auxx + 2buxy + cuyy = d .

Under the condition ∣∣∣∣∣∣
γ′1 γ′2 0
0 γ′1 γ′2
a 2b c

∣∣∣∣∣∣ = aγ′2
2 − 2bγ′1γ

′
2 + cγ′1

2 6= 0 (2.3)

this linear equation system has a uniquely determined solution uxx, uxy, uyy for every right-
hand side. If the second-order derivatives are known, we can calculate all higher partial
derivatives ∂βu(γ(s0)), |β| = 3, 4, . . . , by additional differentiation at each point γ(s0) ∈ γ
(exercise).
The property (2.3) of γ is apparently of some importance, so, for the sake of completeness,
we give it a name.

Definition 2.1 A curve γ(s) is said to be characteristic in s ∈ I if

det(s) := aγ′2(s)
2 − 2bγ′1(s)γ′2(s) + cγ′1(s)

2
= 0 .

A curve γ(s) is said to be non-characteristic in s ∈ I if det(s) 6= 0. Accordingly, if a curve
γ is (non-)characteristic everywhere, i.e. in every s ∈ I, it is called a (non-)characteristic.
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To complete the existence proof foreshadowed above, we need to secure the local convergence
of the Taylor expansion. This is the tough part.

Theorem 2.2 (Cauchy–Kovalevskaya) For the Cauchy problem (2.2), given on the curve
γ = γ(s), the following statement holds: Suppose γ(s) to be non-characteristic in s0 (and
thus in a small neighbourhood s0). Furthermore, suppose that in a neighbourhood of γ(s0) 2,
u0, u1 or equivalently the functions a, b, c, d are real analytic (i.e. representable by a multi-
variant power series). Then in a small enough neighbourhood Kε(γ(s0)) there is a uniquely
determined analytic solution to the Cauchy problem (2.2).

ε
(  )γ

K
ε
(x  ,y  )

0 0

(x  ,y  )

K

0 0

Proof:
See for example John [13] chapter 3.3 or Renardy and Rogers [19] chapter 2.2 2

Note:
Though this fundamental existence theorem can be generalized a bit, there remain some
significant flaws:

• very strong regularity assumptions on the data

• only local existence /

To illustrate the fundamental significance of characteristics we will quickly look at the pro-
liferation of discontinuities.

Theorem 2.3 Let γ = (γ1, γ2) be a smooth curve and Ω = Ω(1) ∪ γ ∪ Ω(2). Suppose the
functions a, b, c, d to be continuous in Ω. Furthermore, we define u ∈ C1(Ω) by u|Ω(i) = u(i),
where

u(i) ∈ C2(Ω(i) ∪ γ), i = 1, 2,

both shall be solutions to (2.1) in Ω(i) ∪ γ. If in every point on γ at least one of the second
derivatives uxx, uxy or uyy is discontinuous, then γ is a characteristic.

Proof:
We define a jump in a function v : Ω→ IR as above along γ as

[v] := v(1)(γ1(s), γ2(s))− v(2)(γ1(s), γ2(s)) .

2More precisely: in a neighbourhood of (γ(s0), u0(γ(s0)), ux(γ(s0)), uy(γ(s0))
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(1)

Ω

Ω

(2)

γ

Since u ∈ C1(Ω), the chain rule provides

0 =
d

ds
[ux] = u(1)

xx γ
′
1 + u(1)

xy γ
′
2 − u(2)

xx γ
′
1 − u(2)

xy γ
′
2 = [uxx]γ′1 + [uxy]γ′2

0 =
d

ds
[uy] = [uxy]γ′1 + [uyy]γ′2 .

The continuity of u, ux, uy and a, b, c, d yields

a[uxx] + 2b[uxy] + c[uyy] = 0 .

Altogether the following linear system of equations is obtained γ′1 γ′2 0
0 γ′1 γ′2
a 2b c

 [uxx]
[uxy]
[uyy]

 = 0 . (2.4)

Since by our assumption [uxx]2 + [uxy]2 + [uyy]2 6= 0, γ has to be a characteristic. 2

2.2 Classification

2.2.1 Quasi-linear differential equations of second order in two variables

The basis for classifying quasi-linear differential equations of second order (cf. (2.1)) is the ex-
istence or non-existence of characteristics. In order to calculate the characteristic directions
(γ′1, γ

′
2)> we are given the equation

aγ′2
2 − 2bγ′1γ

′
2 + cγ′1

2
= 0 .

Consider the arguments x, y, u, ux, uy fixed. Whether real solutions γ′1, γ
′
2 and thus charac-

teristics exist is determined by the discriminant

b2 − ac


< 0 : no real solution

= 0 : one real solution

> 0 : two real solutions .

(2.5)

This motivates the following
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Definition 2.4 The differential equation (2.1) is said to be in x, y, u, ux, uy

elliptic ⇐⇒ b2 − ac < 0 ⇐⇒ no real characteristic
parabolic ⇐⇒ b2 − ac = 0 ⇐⇒ exactly one real characteristic

hyperbolic ⇐⇒ b2 − ac > 0 ⇐⇒ two real characteristics .

Without the following result the whole definition would be futile!

Theorem 2.5 The type of differential equation is invariant under coordinate transforma-
tions.

Proof:
Exercise. 2

Note:
The type of differential equation might depend on x, y and even on the solution u (determined
by additional conditions). /

Note:
Only the main part

auxx + 2buxy + cuyy

and not d(x, y, u, ux, uy) decides about the type of a differential equation. /

Note:
In the case v ∈ C∞0 (IR2), applying the Fourier transformation

v̂(ξ, η) = Fv(ξ, η) =
1

2π

∫
IR2

e−i(xξ+yη) v(x, y) d(x, y)

to the partial derivatives v = ux one obtains the relation Fux = iξû (partial integration).
In the case of constant a, b, c ∈ IR not depending on the solution and u ∈ C∞0 (IR2), applying
the Fourier transformation to (2.1) accordingly provides

(aξ2 + 2bξη + cη2) û(ξ, η) = −d̂(ξ, η).

The polynomial aξ2 + 2bξη + cη2 is called the differential equation’s symbol. In the elliptic,
parabolic or hyperbolic case, the symbol describes an ellipse, a parabola or a hyperbola
respectively. Hence these names. /

Example:
a) Constant coefficients

• Laplace equation:

uxx + uyy = 0 (a = c = 1, b = d = 0)

(elliptic, no characteristics)
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• Heat equation:

uy − uxx = 0 (a = 1, b = c = 0, d = uy)

(parabolic, characteristic: γ = (s, 0))

• Wave equation:

uxx − uyy = 0 (a = −c = 1, b = d = 0)

(hyperbolic, characteristics: γ± = (s,±s+ const.)) /

b) Coefficients depending on solution

• potential flow:

(c2
0 − u2

x)uxx − 2uxuyuxy + (c2
0 − u2

y)uyy = 0

M =
√
c−2

0 (u2
x + u2

y) Mach number

M < 1 ellipic

M = 1 parabolic

M > 1 hyperbolic

2.2.2 Systems of first order in two variables

We now come to classifying systems of 1st order. This shall not contradict our prior agree-
ment. The examination of systems of first order will help us to better understand the
meaning of characteristics especially for the hyperbolic case.
The above considered (scalar) equations of second order can be rewritten into a system of
1st order. To this end we introduce new variables v, w

v := ux and w := uy . (2.6)

With this, we remodel the system of second order

auxx + 2buxy + cuyy = d

into the shape

avx + 2bvy + cwy = d

wx − vy = 0 ,
(2.7)

where the second equation simply results from

vy = uxy = uyx = wx .

To make things more easy, we assume

a 6= 0 .
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The system (2.7) can be written in matrix notation as

Ux +AUy +D = 0 with U :=

(
v
w

)
,

where

A =

(
2b/a c/a

−1 0

)
∈ IR2,2, and D =

(
−d/a

0

)
.

The matrix A has eigenvalues

λ± =
1

a

(
b±

√
b2 − ac

)
.

So we have analogue to (2.5) the following situation

b2 − ac


< 0 : no real eigenvalue

= 0 : one (double) real eigenvalue

> 0 : two (different) real eigenvalues

More over, in the case b2 − ac > 0, it happens that A is diagonalizable over IR! We use this
observation to classify systems of 1st order.

Definition 2.6 The system

Ux +AUy +BU +D = 0 (2.8)

with A,B(x, y, v, w) ∈ IRn,n, D(x, y, v, w) ∈ IRn and an unknown function U(x, y) ∈ IRn is
called elliptic if all eigenvalues of A are complex and hyperbolic if A is diagonalizable over
IR.

Example:
• Laplace equation. Applying transformation (2.6) to the (elliptic!) Laplace equation
uxx + uyy = 0, yields the Cauchy–Riemann differential equation, that is a system of
the form (2.8) with

A =

(
0 1
−1 0

)
, a = c = 1, b = 0.

Apparently, A has imaginary eigenvalues ±i. Attention! Connection to complex
analysis: The complex-valued function W (z) = w(z) + iv(z) with complex argument
z = x+ iy is holomorphic (i.e. complex differentiable) if and only if v, w are solutions
to the above elliptic problem.

• Wave equation. Applying the transformation (2.6) to the (hyperbolic!) wave equa-
tion uxx − uyy = 0, one obtains a system of the form (2.8) with

A =

(
0 −1
−1 0

)
, a = 1, b = 0, c = −1.
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Apparently, A has reel eigenvalues λ1 = −1, λ2 = 1 and orthogonal eigenvectors

e1 =

(
1
1

)
and e2 =

(
1
−1

)
.

Accordingly, we can diagonalize system (2.8) in this case through the transformation

T =

(
1 1
1 −1

)
, T−1 =

1

2

(
1 1
1 −1

)
.

We obtain

T−1Ux + T−1ATT−1Uy = 0 (2.9)

and thus a decoupled system Ũx + T−1ATŨy = 0 with new unknowns

Ũ :=

(
ṽ
w̃

)
= T−1U =

1

2

(
ux + uy
ux − uy

)
.

Note:
As in the above cases, we can transform the heat equation into a parabolic system of first
order, which is actually neither hyperbolic nor elliptic. For lack of meaning though, one does
not speak of a parabolic systems of first order. /

Characteristic for scalar differential equations of first order. In order to understand the
meaning of these ideas closer, let us for a moment consider a scalar differential equation of
the form

a1ux + a2uy + bu+ d = 0. (2.10)

with x, y-dependent coefficients from C1(IR2). In this case one defines:

Definition 2.7 A continuously differentiable curve γ = (γ1, γ2) : I = [0, T ] → IR2, that
fulfills on I the ordinary differential equation

γ′1 = a1(γ), γ′2 = a2(γ) (2.11)

is called characteristic of (2.10).

The following assertions hold:

Theorem 2.8 Let u ∈ C1(IR2) be a solution of (2.10) and γ a characteristic. Then U(t) =
u(γ(t)) fulfills the ordinary differential equation

U ′(t) + b(γ(t))U(t) + d(γ(t)) = 0. ∀t ∈ I (2.12)

Proof:
Exercise. 2
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Theorem 2.9 For every point (x, y) ∈ IR2 there is a characteristic γ with associated param-
eter interval I = [0, T ], such that γ(t) = (x, y) for a t ∈ [0, T ] holds. Let u ∈ C1(IR2) be a
function with the property, that the restriction U(t) = u(γ(t)) for any characteristic γ ful-
fills the ordinary differential equation (2.12). Then u is a solution to the partial differential
equation (2.10).

Proof:
Exercise. 2

Both these theorems show, that the characteristics of (2.10) are precisely the curves, on
which the values u(γ(t)) can be calculated from the ordinary differential equation (2.12). So
along these characteristics, the partial differential equation becomes an ordinary differential
equation! Since no interaction with values from outside the characteristic takes place, one
also says, that the solution’s value is being transported along the characteristics.

Note:
The meaning of these insights for our above examinations is seen best in the example of the
wave equation uxx − uyy = 0: Since the two-dimensional system (2.9) can be decoupled, the
system of first order belonging to the wave equation can be decomposed into two partial
differential equations of the form (2.10). Their characteristics γ(±) are given as solutions to

(γ′1)(±) = 1, (γ′2)(±) = ±1,

are thus two straight lines γ(±)(t) = γ(±)(0) + (t,±t) and indeed identical to the character-
istics that we determined when we examined the wave equation as an equation of second
order. Because of b = d = 0, (2.12) here simply reads U̇ = 0, i.e. the initial conditions
are being transported variation-less along the characteristic. As a solution of the so called
Cauchy initial value problem

uxx − uyy = 0 (x, y) ∈ IR× IR+

u(x, 0) = u0(x) x ∈ IR

uy(x, 0) = u1(x) x ∈ IR

one obtains in this way

ux(x, y) =
1

2

(
− u1(x− y) + u1(x+ y) + u′0(x− y) + u′0(x+ y)

)
uy(x, y) =

1

2

(
u1(x− y) + u1(x+ y)− u′0(x− y) + u′0(x+ y)

)
where we used ux(x, 0) = u′0(x). This yields the so called d’Alembert solution u of the
Cauchy initial value problem. What does the solution look like? (exercise) /

2.3 Well-Posed or Ill-Posed Problems

2.3.1 Initial Value Problems

As an example, we consider the Cauchy problem (2.2) for the Laplace equation

∆u = 0 in Ω
u = g0 on γ

∂

∂n
u = g1 on γ
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on the domain Ω
Ω = IR× IR+, IR+ = {y ∈ IR | y > 0},

with γ = ∂Ω = {(x, y) ∈ IR2 : y = 0}. Since the second variable y in most cases can be
interpreted as time, one calls in this case the corresponding Cauchy condition

u(x, 0) = g0, uy(x, 0) = g1 ∀x ∈ IR

for y = 0 initial value problem and the whole problem Cauchy initial value problem.
Suppose some j ∈ IN fixed. In the case

g0(x) = cos(jπx), g1(x) = jπ cos(jπx) , (2.13)

the solution of the resulting initial value problem for the Laplace equation can easily be
determined using the separation of variables ansatz

uj(x, y) = w(y) cos(jπx) ,

because it follows that

uj(x, y) = ejπy cos(jπx) .

The solution

un(x, y) =

n∑
j=1

1

(jπ)4
ejπy cos(jπx)

to the initial conditions

gn0 (x) =

n∑
j=1

1

(jπ)4
cos(jπx), gn1 (x) =

n∑
j=1

1

(jπ)3
cos(jπx) ,

one obtains by superposition. Apparently, the function sequences gn0 , gn1 converge uniformly
to the Lipschitz-continuous functions

g0(x) =
∞∑
j=1

1

(jπ)4
cos(jπx), g1(x) =

∞∑
j=1

1

(jπ)3
cos(jπx). (2.14)

For any y > 0 however,

un(0, y) =
n∑
j=1

1

(jπ)4
ejπy →∞.

Thus, arbitrarily small changes in the initial condition have an (infinitely) large
effect on the associated solution. This motivates the following definition.

Definition 2.10 The Cauchy problem (2.2) is called well-posed (in X and Y wrt. the norms
‖ · ‖) if the following conditions hold:
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• existence and uniqueness: ∀g0, g1 ∈ X there exists a uniquely determined solution
u ∈ Y

• continuous dependency on the data: there are c0, c1 ∈ IR, such that

‖u− ũ‖ ≤ c0‖g0 − g̃0‖+ c1‖g1 − g̃1‖.

Otherwise the problem is called ill-posed (in X and Y wrt. the norms ‖ · ‖).

Through our counterexample we have shown, that the Cauchy initial value problem for the
Laplace equation with respect to the maximum norm ‖·‖∞ is ill-posed. Nevertheless, elliptic
problems on unbounded domains do occur in practice (e.g. the potential of a point charge).
In this case, one has to define appropriate fading conditions in order to obtain a well-posed
problem.

Wave equation. Analogue to the above method (separation of variables, superposition,
going to the limit), one obtains as a solution to the initial value problem for the (hyperbolic!)
wave equation uxx − uyy = 0 for the initial conditions (2.14) the bounded in-limit-solution

un(x, y)→ u(x, y) =

∞∑
j=1

1

(jπ)4
(sin(jπy) + cos(jπy)) cos(jπx) .

This problem is apparently well-posed wrt. the maximum norm.

Heat equation. In the case of the (parabolic!) heat equation uy = uxx the solution is
over-determined by the two initial conditions (2.13), because at least for smooth solutions

g1(x) = uy(x, 0) = lim
y→0

uy(x, y) = lim
y→0

uxx(x, y) = g′′0(x) .

This difficulty is not surprising, because γ = {(x, 0) | x ∈ IR} is exactly the heat equation’s
characteristic! So, although we are dealing with a differential equation of second order, we
can demand only one initial condition for the wave equation’s Cauchy initial value problem,
that is

u(x, 0) = g0(x) ∀x ∈ IR .

This circumstance can also be interpreted physically (“Infinite propagation velocity”).

Note:
In our example

g0(x) =
∞∑
j=1

1

(jπ)4
cos(jπx)

by using separation of variables, superposition and going to the limit, one gets a solution

u(x, y) =
∞∑
j=1

1

(jπ)4
e−(jπ)2y cos(jπx) .

What difficulties arise if, instead of uy − uxx = 0, one considers the backward heat equation
uy + uxx = 0? How can one interpret these difficulties physically? /
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2.3.2 Boundary and Initial Value Problems

Boundary value problems. For partial differential equations with a bounded domain Ω
one usually can only fix one condition at the boundary. We already got to know Dirichlet,
Neumann and Cauchy boundary conditions in chapter 1. In this case, one speaks of a
boundary value problem.
With elliptic boundary value problems we will deal in detail in the next chapter. Through
counterexamples, one can show that boundary value problems for hyperbolic and parabolic
differential equations are generally ill-posed (exercise).

Initial value problems. If the given domain is unbounded in one coordinate direction (usu-
ally in time direction) and bounded in all other directions, then additional to the initial
conditions there are some boundary conditions necessary. For example, we can consider the
heat equation on

Ω = (0, 1)× IR+

with the initial condition
u(x, 0) = u0(x), ∀x ∈ IR

and the Dirichlet boundary conditions

u(0, y) = g0(y), u(1, y) = g1(y) ∀y ∈ IR+

(physical interpretation?) This is a typical initial value problem. Initial value problems for
elliptic differential equations are generally ill-posed, too (counterexample?).
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3.1 Representation Formulas and Green’s Function

As a prototype of elliptic differential equations we investigate Poisson’s equation

−∆u = f in Ω . (3.1)

Here we assume f ∈ C(Ω).

∆u =
n∑
j=1

∂2u

∂x2
j

is called the Laplace Operator or Laplacian. In the case f ≡ 0, (3.1) is called Laplace’s
equation. Every function u, that solves Laplace’s equation, is called harmonic. We consider
(3.1) on a bounded domain Ω ⊂ IRn (i.e. open and connected) with smooth boundary ∂Ω
(Green domain). On ∂Ω we assess Dirichlet boundary conditions, i.e.

u(x) = g(x) for x ∈ ∂Ω , (3.2)

and suppose g ∈ C(∂Ω).

Definition 3.1 If u ∈ C2(Ω) ∩ C(Ω) solves Poisson’s equation (3.1) in Ω and fulfills the
Dirichlet boundary conditions (3.2) on ∂Ω, we call u classical solution to the boundary prob-
lem (3.1), (3.2).

The solution space C2(Ω)∩C(Ω) secures the existence of the necessary derivatives of u in the
interior of Ω and the continuous taking of the boundary conditions. The following example
shows, that it is useless to restrict the solution space any further.

Example:
Suppose Ω = {(r, ϕ) | r ∈ (0, 1) , ϕ ∈ (0, 3

2
π)} and

f(r, ϕ) ≡ 0 (r, ϕ) ∈ Ω
g(r, ϕ) = sin

(
2
3ϕ
)

(r, ϕ) ∈ ∂Ω .

Observe that g ∈ C(∂Ω)! We transform the Laplacian into polar coordinates

x = r cosϕ

y = r sinϕ

and together with

u(r, ϕ) = r
2
3 sin( 2

3
ϕ)

we gain a solution to the corresponding boundary value problem. Now we will show, that
u 6∈ C1(Ω).

29
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ϕ

y

x

Figure 3.1: reentrant angle

Along with ux and uy, ur should be bounded as well, because

ur = uxxr + uyyr = ux cosϕ+ uy sinϕ ,

but

ur = 2
3
r−

1
3 sin( 2

3
ϕ)→∞ for r → 0 .

The reason for these problems is the reentrant angle in the domain Ω. /

We now want to investigate, whether a classical solution u is determined uniquely through g
and f and whether it depends continuously on these data. To this end we will first derive an
integral representation of (smooth enough) solutions. Fundamental to this are (once again)
suitable product rules.

Lemma 3.2 Suppose u, v ∈ C2(Ω). Then Green’s first identity

∫
Ω

u∆v dx = −
∫
Ω

∇u · ∇v dx+

∫
∂Ω

u
∂v

∂n
dσ (3.3)

and Green’s second identity

∫
Ω

(u∆v − v∆u) dx =

∫
∂Ω

(u
∂v

∂n
− v ∂u

∂n
) dσ (3.4)

hold.

Proof:
(3.3) follows, by choosing V = u∇v, directly from the divergence theorem. (3.4) follows from interchanging
u and v in (3.3) and subtracting. 2
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Conclusion 3.3 The Dirichlet problem for Poisson’s equation has at most one solution u ∈
C2(Ω) (exercise). In particular, u is overdetermined by fixing u and ∂u

∂n at the boundary.

Conclusion 3.4 In the case of Neumann boundary conditions

∂

∂n
u = h on ∂Ω ,

the compatibility condition ∫
Ω

f dx = −
∫
∂Ω

h dσ

is necessary for the existence of a solution.1

One can check that the Laplacian is invariant under rotation (physical interpretation?). This
motivates the examination of rotationally invariant solution, i.e. solutions of the form

u(x) = s(r) r = |x− a| , a ∈ IRn.

Lemma 3.5 Rotationally invariant, in IRn \ {a} harmonic functions have the form

s(r) =

{
c log r + C n = 2

c r2−n + C n > 2
(3.5)

with arbitrary constants c, C ∈ IR .

Proof:
By transforming the Laplacian into polar coordinates. (Exercise). 2

We now choose special values for the constants c, C.

Definition 3.6 Suppose a ∈ IRn. The in IRn \ {a} harmonic function

s(x, a) =

{
− 1

2π log |x− a| n = 2

− 1
n(2−n)ωn

|x− a|2−n n > 2

is called singularity function. Here ωn =
∫
|x|=1 dσ shall denote the surface area of the unit

sphere in IRn.

By means of the singularity function, one defines the fundamental solutions:

Definition 3.7 Suppose Φ(·, a) ∈ C2(Ω) harmonic for all a ∈ Ω. Then

γ(x, a) := s(x, a) + Φ(x, a)

is called fundamental solution of Laplace’s equation in Ω.

1Directly by applying ∆v = −f and ∂v
∂n

= g with u = 1 to (3.3).
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Now we can formulate the representation theorem.

Theorem 3.8 (Representation Theorem) Suppose u ∈ C2(Ω) and γ being a fundamental
solution. Then for every point a ∈ Ω,

u(a) =

∫
∂Ω

(
γ(x, a)

∂

∂n
u(x)− u(x)

∂

∂n
γ(x, a)

)
dσ −

∫
Ω

γ(x, a)∆u(x) dx . (3.6)

Proof:
One can find the proof for example in Jost [14, p. 11]. There, the following property of the singularity function
is used: Suppose K%(a) := {x ∈ IRn | |x− a| < %} ⊂ Ω and v ∈ C(Ω) arbitrary. Then:

lim
%→0

∫
K%(a)

v(x) s(x, a) dx = 0 and lim
%→0

∫
∂K%(a)

v(x) s(x, a) dσ = 0,

as well as

− lim
%→0

∫
∂K%(a)

v(x)
∂

∂nK
s(x, a) dσ = v(a),

where nK denotes the outward normal on K%(a). These equations then imply the claim. 2

Observe, that the formula (3.6) represents the value of the solution u(a) through the right-
hand side f = −∆u and the Cauchy data u and ∂u

∂n on ∂Ω. We have already seen, that in

every x ∈ ∂Ω, we can either prescribe only u or only ∂u
∂n . To get to a representation of u(a)

depending only on known data, we now choose the formerly unknown function Φ properly.
As in our case, with given Dirichlet boundary conditions, we want to choose Φ in a way,
that for all a ∈ Ω the following condition

γ(x, a) = 0 ∀x ∈ ∂Ω (3.7)

or equivalently
Φ(x, a) = −s(x, a) ∀x ∈ ∂Ω

holds.

Definition 3.9 A fundamental solution G(x, a) = γ(x, a) with the property G(x, a) = 0 for
all x ∈ ∂Ω is called Green’s function of first kind.

The representation formula (3.6) of a solution u for the Dirichlet problem the transforms
into

u(a) =

∫
Ω

G(x, a) f(x) dx−
∫
∂Ω

∂

∂n
G(x, a) g(x) dσ . (3.8)

Example:
Suppose g = 0 and fn ∈ C(Ω), n ∈ IN a sequence of functions with the property∫

Ω

fn(x) dx = 1, supp fn ⊂ K 1
n

(x0) .
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1

f2

f3

f

Figure 3.2: example for a sequence of functions fn

The set

supp fn = {x ∈ Ω | fn(x) 6= 0}
is called support of fn. x0 ∈ Ω is chosen arbitrarily, but fixed for all n. We consider the
corresponding solution un to exist and to lie in C2(Ω). Then for all a ∈ Ω, a 6= x0

un(a)→ u(a) = G(x0, a) for n→∞ .

With this, one can imagine u(x) = G(x0, x) as a solution of

−∆G(x0, x) = δx0(x)

with a right-hand side

δx0 = lim
n→∞

fn (3.9)

with the following property∫
Ω

δx0(x) dx = 1 , δx0(x) = 0 for x 6= x0 .

Clearly, such a function cannot exist (although the physicist Dirac used it successful and it
is nowadays an indispensable tool in physics). This is a generalized function, called Dirac’s
δ-distribution. We will talk about distributions again later on. Then it will become clear,
how to interpret the limit in (3.9).
For the time being, we can imagine δx0 as a point source. The decay the corresponding
Green’s function G(x, x0) especially describes the effect of small perturbations on the right-
hand side f in x0. The decay of G(x, x0) is dominated by the singularity function and
therefore behaves like

O (− log |x− x0|) for n = 2

O
(
|x− x0|2−n

)
for n > 2 .

G(x0, x) > 0 holds (exercise). With this, though perturbations of the right-hand side f
(at a point x0 ∈ Ω) affect the solution u globally (in every x ∈ Ω), the effect will decay
with growing distance to x0 very rapidly. Local perturbation thereby have an (almost) local
effect. /
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In general, the existence of a Green’s function is not sure. The following example illustrates
the difficulties.

Theorem 3.10 Suppose for all a ∈ Ω the Dirichlet problem

∆Φ(·, a) = 0 in Ω

Φ(·, a) = −s(·, a) on ∂Ω

to be solvable and Φ(·, a) ∈ C2(Ω). Then there is a Green’s function of the first kind to the
corresponding Dirichlet problem.

We have already seen, that especially in domains with a reentrant angle, the regularity
condition Φ(·, a) ∈ C2(Ω) can become problematic. For certain domains however, one can
write down Green’s function explicitly. As you might expect, the most simple case is a ball,
cf. Jost [14, p. 14].

3.2 Existence

Up until low, we always presumed the existence of a solution u ∈ C2(Ω) and derived its
representation through the data by applying Green’s function. Now one can hope that
conversely by formula (3.8), there is always a solution to the Dirichlet problem for Poisson’s
equation defined. In general however, this is wrong. There are particularly right-hand sides
f ∈ C(Ω), such that (3.8) is no solution to the Dirichlet problem. One needs in general more
regularity.

Theorem 3.11 Suppose g = 0 and f Hölder continuous with exponent λ ∈ (0, 1), that is

|f(x)− f(y)| ≤ c |x− y|λ ∀x, y ∈ Ω

with a constant c ∈ IR independent of x, y. In addition, suppose there is an associated Green’s
function of first kind G(ξ, x). Then

u(x) =

∫
Ω

G(ξ, x)f(ξ) dξ

is a solution to the Dirichlet problem.

Proof:
See for example Hackbusch [12] p. 38. 2

Note:
Bear in mind the regularity conditions on f and above all on Ω (existence of a Green’s
function G(ξ, x)!). /

To guarantee the existence of a solution to the Dirichlet problem (3.1), (3.2), we just need
an existence result for the homogeneous case f = 0. Here we will confine ourselves to a ball.
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Theorem 3.12 (Poisson’s Integral Formula) Suppose Ω = {x ∈ IRn | |x| < %}, f = 0 and
g ∈ C(∂Ω). Then

u(x) =
%2 − |x|2

%ωn

∫
∂Ω

g(ξ)

|ξ − x|n
dσ for x ∈ Ω (3.10)

is a classical solution to the Dirichlet problem (3.1), (3.2). In addition, u ∈ C∞(Ω) ∩ C(Ω)
holds.

Proof:
Cf. John [13] or Hackbusch [12]. The proof relies on a special form of Green’s function for the ball and
applying it to (3.8). 2

More general existence results are to be found in John [13]. There, the regularity conditions
at the boundary ∂Ω play a major role.

3.3 Uniqueness and Continuous Dependence on the Data

An important consequence from the representation formula (3.8) is the Mean Value Property
(MVP).

Theorem 3.13 Suppose u harmonic in Ω. If x ∈ Ω and % > 0 small enough, such that
K%(x) ⊂ Ω, then

u(x) =
1

ωn%n−1

∫
∂K%(x)

u(ξ) dσ . (3.11)

Proof:
For x = 0 the representation formula (3.8) has the form (3.10). Applying u = g on ∂Ω and |ξ| = % yields

(3.11). The case x 6= 0, can be reduced to x = 0 by a translation Ω̃ := Ω− x. 2

Theorem 3.14 (Strong Maximum Principle) If u is harmonic in Ω ⊂ IRn and has a
maximum or minimum in x ∈ Ω, then u is constant in Ω.

Proof:
Suppose M := sup{u(x) |x ∈ Ω} <∞. We divide Ω into

Ω1 = {x ∈ Ω |u(x) = M} ∪ Ω2 = {x ∈ Ω |u(x) < M} .

Since u is continuous, Ω2 is open. We will show, that Ω1 is open as well. Suppose x ∈ Ω1, that is u(x) = M .
From the MVP it follows, that for small enough % > 0

0 =
1

ωn%n−1

∫
∂K%(x)

u(ξ) dσ − u(x)

=
1

ωn%n−1

∫
∂K%(x)

(u(ξ)−M) dσ .

Since u(ξ)−M is continuous in ξ and u(ξ)−M ≤ 0 , it follows u(ξ) = M ∀ξ ∈ ∂K%(x). By contraposition,
we see that K%(x) ⊂ Ω1. Since Ω is (topologically) connected, we have Ω1 = ∅ or Ω2 = ∅. This implies the
claim. The minimum property follows by applying the maximum property to the harmonic function −u. 2
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Note:
From the strong maximum principle follows

G(ξ, x) > 0 ∀ξ, x ∈ Ω, ξ 6= x .

Conclusion 3.15 (Weak Maximum Principle) for every harmonic function u ∈ C(Ω) ∩
C2(Ω)

min
ξ∈∂Ω

u(ξ) ≤ u(x) ≤ max
ξ∈∂Ω

u(ξ) ∀x ∈ Ω.

Theorem 3.16 (Uniqueness) The Dirichlet problem (3.1), (3.2) has at most one solution
u ∈ C2(Ω) ∩ C(Ω).

Proof:
Suppose u1, u2 ∈ C(Ω) ∩ C2(Ω) two solutions. Then u = u1 − u2 solves the homogeneous problem (f =
0, g = 0). If u(x) 6= 0 for a x ∈ Ω, then there would be a (positive) maximum or a (negative) minimum in Ω.
Because of thm. 3.14 this is not possible. 2

One last important consequence from the weak maximum principle is the following theorem.

Theorem 3.17 (Continuous dependency on the boundary data) Consider u1, u2 to be
two classical solutions to the boundary value problems

−∆ui = f in Ω , ui = gi on ∂Ω , i = 1, 2 .

Then
max
x∈Ω
|u1(x)− u2(x)| ≤ max

y∈∂Ω
|g1(y)− g2(y)| .

Proof:
From g1 = g2, from the uniqueness theorem 3.16 follows u1 = u2. So consider g1 6= g2.
Obviously, u = u1 − u2 is harmonic and fulfills the boundary conditions g = g1 − g2. If

u(x) > max
y∈∂Ω

|g(y)| ≥ max
y∈∂Ω

g(y) ,

u would have a maximum in Ω without being constant. Similarly, one excludes the case

−u(x) > max
y∈∂Ω

|g(y)| ≥ − min
y∈∂Ω

g(y) .
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As in the previous chapter, we consider the Dirichlet problem

−∆u = f in Ω

u = g on ∂Ω
(4.1)

with f ∈ C(Ω), g ∈ C(∂Ω) and a smoothly bounded domain Ω (e.g. parametrization
of ∂Ω continuously differentiable). We assume the existence of a classical solution u ∈
C2(Ω) ∩ C(Ω).

4.1 Grids and Difference Quotients

We want to develop a difference method, that approximatively solves (4.1). To this end, we
first cover the domain Ω with a equidistant grid to the step-size h > 0,

Ωh = {x ∈ Ω |x = (ih, jh), i, j ∈ ZZ} .

As boundary discretization we use

∂Ωh = {x ∈ ∂Ω |x = (x1, x2) , x1 = ih or x2 = ih, i ∈ ZZ} .

There might also be other discretizations possible. The above alternative will later lead to
the so called Shortley–Weller method.

Ω
h

Ωh

Figure 4.1: discretization of Ω

Observe the disturbance of the equidistant grid at the boundary. An important subset of
the equidistant grid Ωh is the set of inner points, denoted Ω◦h. This is defined as follows:

Ω◦h = {x ∈ Ωh | Nb(x) ⊂ Ωh}

37
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There, we used the set of neighbours Nb(x):

Nb(x) = {y ∈ Ωh ∪ ∂Ωh : |x1 − y1|+ |x2 − y2| ≤ h} .

Neighbouring points are being labeled in accordance to figure 4.2. Similar to the continuous
case, we finally set

Ωh = Ωh ∪ ∂Ωh .

δΩ

xC xOxW

xS

xN

o

o/
 

Ωh

Ωh

Ωh Ωh

grid points, boundary points and inner points

Figure 4.2: Left – grid points for approximation of the Laplacian. We see the labelling of
the neighbours Nb(xC) = {xW , xN , xO, xS} of the central point xC ∈ Ωh. In the
present case apparently xC 6∈ Ω◦h.
Right – illustration of inner points.

Definition 4.1 Ωh is called discretely connected if every pair of grid points x, y ∈ Ωh can be
connected by a sequence of neighbouring points.

Lemma 4.2 Let Ω be connected. Then there is a h0 > 0, such that for all h < h0, Ωh is
discretely connected.

Proof:
Exercise. 2

From now on, Ωh shall be discretely connected, that is h chosen small enough. On Ωh we
now search a grid function

U : Ωh → IR ,

that approximates the continuous solution u ∈ C2(Ω)∩C(Ω) of (4.1) as well as possible. In
order to obtain a calculation rule for U we have to approximate the differential equation on
the one side, and the boundary condition on the other side.

To approximate the derivatives appearing in the Laplacian we want to use difference quotients
(with the notation from fig. 4.2):
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D+
1 U(xC) =

U(xO)− U(xC)

|xO − xC |
(forward)

D−1 U(xC) =
U(xC)− U(xW )

|xC − xW |
(backward)

D1U(xC) = 1
2

(
D+

1 U(xC) +D−1 U(xC)
)

(central) .

Lemma 4.3 Let u ∈ C2(Ω) and x ∈ Ωh. Then for D = D+
1 , D

−
1 , D1,

ux1(x)−Du(x) = O (h) (4.2)

holds. If even u ∈ C3(Ω) and x ∈ Ω◦h, then for D1 follows

ux1(x)−D1u(x) = O
(
h2
)
. (4.3)

Proof:
We will only show (4.3). Taylor expansion for x = xij = (ih, jh) ∈ Ω◦h provides

u(xi±1,j) = u(xij)± hux1(xij) +
h2

2
ux1x1(xij)±

h3

6
ux1x1x1(xij ± ω±h)

with ω± ∈ (0, 1). Insertion yields

D1u(xij) =
1

2h
(u(xi+1,j)− u(xi−1,j))

= ux1(xij) +O
(
h2) .

Central difference quotients thus have (under suitable smoothness requirements!) a higher
approximation quality. To approximate the second order derivatives we thus use the central
divided differences of second order

D11U(xC) =
2

|xO − xW |
(
D+

1 U(xC)−D−1 U(xC)
)

D22U(xC) =
2

|xN − xS |
(
D+

2 U(xC)−D−2 U(xC)
)

.

As discretization ∆h of the Laplacian ∆ we finally choose

∆h = D11 +D22 .

Expanded this becomes

∆hU(xC) = αC U(xC) + αW U(xW ) + αO U(xO) + αN U(xN ) + αS U(xS) .

with the corresponding weights αC , αW ,αO, αS and αN . These can also be interpreted as
values of a grid function

α(x, xD) = αD, D = C,W,O,N, S
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N

αC
αW αO

α

α

S

in x = xC ∈ Ωh. More graphic is the following difference star.
In the case xC ∈ Ω◦h we have the following standard 5-point star

αC = − 4

h2
, αW = αO = αN = αS =

1

h2
.

In general though, the weights depend on xC ∈ Ωh \ Ω◦h. For all xC ∈ Ωh however, the
following relations hold

αC < 0 , αW , αO, αN , αS > 0 , αC + αW + αO + αN + αS = 0 .

Difference method with these properties are called of positive type.
We shortly want to investigate the accuracy of our difference approximation.

Lemma 4.4 Consider u ∈ C3(Ω) and x ∈ Ωh. Then

∆u(x)−∆hu(x) = O (h) .

If even u ∈ C4(Ω) and x ∈ Ω◦h, then follows

∆u(x)−∆hu(x) = O
(
h2
)
.

Proof:
Taylor expansion. 2

4.2 The Shortley–Weller Method

As difference approximation of (4.1) we finally obtain the Shortley–Weller method :

−∆hU(x) = fh(x) x ∈ Ωh

U(x) = gh(x) x ∈ ∂Ωh .
(4.4)
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Here, fh and gh are appropriate approximations of the data f and g. We simply choose

fh(x) = f(x) for x ∈ Ωh , gh(x) = g(x) for x ∈ ∂Ωh . (4.5)

Using the boundary condition in (4.4) we can eliminate the unknown U(x), x ∈ ∂Ωh. In
order to determine the remaining values we have to solve a linear equation system with
N = #Ωh equations and unknowns. After the introduction of a convenient numeration of
the grid points

Ωh = {xi | i = 1, . . . , N}

it becomes

AU = F (4.6)

with a coefficient matrix A,

A = (aij)
N
i,j=1 aij = −α(xi, xj) ,

a vector of unknowns U ,

U = (Ui)
N
i=1 ,

and a right-hand side F ,

F = (Fi)
N
i=1 , Fi = fh(xi) +

∑
y∈∂Ωh

α(xi, y)gh(y) .

Independent of the chosen numeration, in every row of A there are at most 5 non-zero entries.
So A is sparse. In the case ∂Ωh ⊂ {x = (ih, jh) | i, j ∈ ZZ}, A is symmetric, i.e. aij = aji.
Unfortunately, in general this is wrong!

Definition 4.5 The graph of a matrix A = (aij)
N
i,j=1 has N knots and there is an oriented

edge between the knots i and j if aij 6= 0. The matrix A is called irreducible if the graph of
A is connected, i.e. if a pair of knots i, j can be connected by a sequence of knots.

Note:
If Ωh is discretely connected, then A is irreducible. /

There are other properties of our discretization (4.4) that also can be translated into prop-
erties of the algebraic equation system (4.6) and vice-versa. We have two different points of
view at our disposal. To stress the analogy with the continuous case, we prefer to talk about
grid functions rather then vectors and will only once in a while come back to the algebraic
point of view.

Definition 4.6 A grid function U : Ωh → IR with the property

−∆hU = 0 on Ωh

is called discretely harmonic. If only

−∆hU ≤ 0 on Ωh

holds, U is called discretely subharmonic.
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Lemma 4.7 (Discrete mean value property) If U is discretely subharmonic, U has the dis-
crete mean value property

U(xC) ≤ 1

αW + αO + αS + αN
(αWU(xW ) + αOU(xO) + αSU(xS) + αNU(xN )) (4.7)

for all xC ∈ Ωh.

Proof:
This follows by

−αC = αW + αO + αS + αN > 0 .

Since we assumed Ωh to be discretely connected, there is another analogy to the continuous
case, following from the mean value property.

Theorem 4.8 (Discrete maximum principle) Let U be discretely subharmonic. Then U
reaches its maximal value on ∂Ωh or is constant in Ωh .

Proof:
Suppose xC ∈ Ωh and

U(xC) = M = max
x∈Ωh

U(x) .

Then from the discrete mean value property follows

0 ≤ αW (U(xW )− U(xC)) + αO (U(xO)− U(xC))

+ αS (U(xS)− U(xC)) + αN (U(xN )− U(xC)) .

All summands are non-positive, since U(xC) = M . It thus follows

U(x) = M, ∀x ∈ Nb(xC) .

Since two grid points from Ωh can be connected by a sequence of finitely many neighbouring points, the
assertion follows. 2

We go on as in the continuous case.

Theorem 4.9 The discrete boundary value problem (4.4) is uniquely solvable.

Proof:
Given two solutions U (1), U (2) of (4.4), U = U (1) − U (2) fulfills the equations

−∆hU(x) = 0 x ∈ Ωh

U(x) = 0 x ∈ ∂Ωh .

In particular, U is discretely subharmonic. Setting maxx∈Ωh U(x) = M > 0, from the discrete maximum
principle follows U(x) = M ∀x ∈ Ωh. This contradicts U(x) = 0, x ∈ ∂Ωh. So U(x) ≤ 0 has to be true
for all x ∈ Ωh. Assuming minx∈Ωh U(x) = M < 0 leads in the same way to a contradiction, since −U is
discretely subharmonic as well. We are dealing with a linear mapping from an finite-dimensional space. From
injectivity the surjectivity follows. 2

As a last consequence from the discrete maximum principle we deduce the inverse monotony
of −∆h.

Lemma 4.10 The discrete Laplacian −∆h is inversly monotone, i.e. from the conditions

−∆hU(x) ≤ −∆hV (x) x ∈ Ωh

U(x) ≤ V (x) x ∈ ∂Ωh

follows that

U(x) ≤ V (x) , x ∈ Ωh .
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Proof:
Apparently, for W = U − V , we have

−∆hW (x) ≤ 0 x ∈ Ωh

W (x) ≤ 0 x ∈ ∂Ωh .

If then, in contradiction to the assertion

max
x∈Ωh

W (x) = M > 0 ,

following the discrete maximum principle W (x) = M > 0, ∀x ∈ Ωh would hold. This however contradicts
W (x) ≤ 0, x ∈ ∂Ωh. 2

We will need lemma 4.10 later on for the stability. For now there is another interesting
property for the coefficient matrix A following.

Note:
Since (4.4) is solvable uniquely, A has to be regular. If one appoints in lemma 4.10 V (x) = 0,
∀x ∈ ∂Ωh, one in particular gets

AU = F ≤ 0 ⇒ U ≤ 0 ,

where “≤” is meant component-wise. Choosing F = −ei (i-th unit vector), one obtains the
solution

U = −(A−1)i ≤ 0 (i-th column A−1) .

With this, we have shown that component-wise

A−1 ≥ 0

holds. A more thorough analysis shows even A−1 > 0 (exercise). This is no mere coincidence,
because A−1 plays the role of a discrete Green’s function! The interpretation of the columns
(A−1)i as grid functions corresponds to G(xi, ·), since

A(A−1)i = ei

is a discrete analogon to

−∆xG(xi, x) = δxi(x) x ∈ Ω .

The Green’s function G(xi, ·) is positive. Discretizations that preserve this property, are of
particular importance. This motivates

Definition 4.11 (M -Matrix) A matrix A = (aij)
N
i,j=1 is called M -matrix if it fulfills

aii > 0 , aij ≤ 0 , i, j = 1, . . . , N

A is regular and A−1 ≥ 0 .

We have shown above that our discretization (4.6) yields an M-matrix. /



44 4 Difference Methods

4.3 Consistency, Stability and Convergence

In preparation for the concluding convergence theorem we will first show a discrete analogon
to the a priori stability estimate

max
x∈Ω
|u(x)| ≤ max

x∈∂Ω
|u(x)|+ c sup

x∈Ω
|∆u(x)| .

Reminder: From this estimate follows that the continuous boundary value problem is repre-
sented properly.

Theorem 4.12 (Stability) Let U be a grid function on Ωh and R the radius of a circle KR(0)
with Ωh ⊂ KR(0). Then the following estimate holds:

max
x∈Ωh

|U(x)| ≤ max
x∈∂Ωh

|U(x)|+ R2

2
max
x∈Ωh

|∆hU(x)| .

Proof:
The proof is somewhat technical (tricky). We examine the effect the Laplacian ∆h has on

W (x) =
1

2
x2

1 , V (x) = 1 , x = (x1, x2) ∈ Ωh .

Inserting yields
∆hW (x) = 1 , ∆hV (x) = 0 , x ∈ Ωh .

We define
M = max

x∈Ωh
|∆hU(x)| , N = max

x∈∂Ωh
|U(x)| .

With this, for both signs follows

−∆h (±U +MW ) (x) ≤ 0 = −∆h

(
(N +

R2

2
M)V

)
(x) , x ∈ Ωh

±U(x) +MW (x) = (N +
R2

2
M)V (x) , x ∈ ∂Ωh .

The inverse monotonicity from lemma 4.10 provides

±U(x) +MW (x) ≤ N +
R2

2
MV (x) , x ∈ Ωh .

So, because MW (x) ≥ 0,

±U(x) ≤ N +
R2

2
M , x ∈ Ωh .

This is exactly what we wanted to show. 2

The above theorem ensures the stability of U against perturbations of ∆hU and perturbations
of the boundary data. We will exploit that now.

Definition 4.13 Inserting the exact solution into the difference approximation one obtains
the local truncation error

τh(x) = fh(x) + ∆hu(x) x ∈ Ωh

τh(x) = u(x)− gh(x) x ∈ ∂Ωh .



4.3 Consistency, Stability and Convergence 45

The difference method is called consistent if

max
x∈Ωh

|τh(x)| → 0 , h→ 0

and consistent of order p if
max
x∈Ωh

|τh(x)| = O (hp)

holds.

Theorem 4.14 (Consistency) Suppose u ∈ C3(Ω). Then we have

max
x∈Ωh

|τh(x)| = O (h) .

Proof:
Evidently τh(x) = 0 for x ∈ ∂Ωh, and because of fh(x) = f(x), we have

τh(x) = fh(x) + ∆hu(x) = −∆u(x) + ∆hu(x) = O (h) for x ∈ Ωh

by lemma 4.4. 2

Note:
We even have τh(x) = O

(
h2
)

if x ∈ Ω◦h (and u smooth enough). /

From consistency and stability now convergence follows.

Theorem 4.15 (Convergence) Suppose u ∈ C3(Ω). Then:

max
x∈Ωh

|U(x)− u(x)| = O (h) .

Proof:
We set V (x) = U(x)− u(x) for x ∈ Ωh. Then follows by definition of the truncation error

−∆hV (x) = fh(x) + ∆hu(x) = τh(x) x ∈ Ωh

V (x) = τh(x) x ∈ ∂Ωh .

From the stability we get

max
x∈Ωh

|U(x)− u(x)| = max
x∈Ωh

|V (x)|

≤ max
x∈∂Ωh

|τh(x)|+ R2

2
max
x∈Ωh

|τh(x)| = O (h) .

So our difference method is consistent. Convergence and consistency order coincide.
A glance at the convergence proof shows that only a bad consistency near the boundary

τh(x) = O (h) , x ∈ Ωh \ Ω◦h

prevents the convergence order 2 (if u ∈ C4(Ω)).
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Note:
For vanishing step-size h, the number of irregular points #Ωh \Ω◦h is one order of magnitude
smaller than the number of inner points Ω◦h. This makes us hope for a tightening of our
convergence result. A closer analysis indeed gives the following theorem. /

Theorem 4.16 Suppose u ∈ C4(Ω). Then:

max
x∈Ωh

|U(x)− u(x)| = O
(
h2
)

.

Proof:
See for example Hackbusch [12, p. 82]. 2



5 Weak Solutions

From section 1.1.1 we know that the deflection u of a fixed membrane Ω caused by a force
density f is the solution to the elliptic boundary value problem

−div (α∇u) = f in Ω

u = 0 on ∂Ω.
(5.1)

Here α > 0 is a material constant. We now consider a membrane made from to different
materials. Then

α(x) =

{
α1 x ∈ Ω1

α2 x ∈ Ω2

,

where α1, α2 ∈ IR and the partial domains Ω1, Ω2, with Ω1 ∪Ω2 ∪ Γ = Ω , Γ = ∂Ω1 ∩ ∂Ω2 ,
represent the different materials.

2

Ω
1

Ω

Figure 5.1: transition problem

From α1 6= α2 the dilemma arises, that either ∇u or α∇u can be continuous in Ω. In both
cases, (5.1) cannot be fulfilled (in the classical sense). A possible way out might be to replace
(5.1) by a so called transition problem. Here we demand (5.1) to be valid only in the interior
of Ω1 and Ω2. At the inner boundary Γ = ∂Ω1 ∩ ∂Ω2 with normal vector n (in whatever
direction!) one sets the transition conditions

u1 = u2 on Γ

α1
∂

∂n
u1 = α2

∂

∂n
u2 on Γ ,

(5.2)

where ui = u|Ωi
for i = 1, 2. Now we have to clear existence, uniqueness and stability of the

solution to transition problems.

47
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In order to apply difference schemes, the transition conditions (5.2) have to be discretized
separately. For a curved transition Γ especially the discretization of the normals becomes
tricky. The problems become even worse if Γ = Γ(u) depends on an unknown function
u (heat conduct, porous media). In the course of the iterative solution of the resulting
non-linear system of equations one has to adapt the whole discretization of the transition
condition to the at each time effective transition Γ(Uνh ).

Such problems are typical for difference schemes. Their fundamental disadvantages are

• missing flexibility,

• high regularity requirements.

To construct more resistant solvers, we remember, that our mathematical modeling first lead
to the minimization problem

u ∈ H : J(u) ≤ J(v) ∀v ∈ H (5.3)

for the energy functional

J(v) =
1

2

∫
Ω

α |∇v|2 dx−
∫
Ω

fv dx . (5.4)

Only afterwards and under additional regularity assumptions, we were able to derive a cor-
responding differential equation. These assumption are for non-smooth date, for example
for discontinuous α, just plainly wrong! This thought in mind, we will from now on concen-
trate on solving the minimization problem (5.3) directly. Again we have to clarify existence,
uniqueness and continuous dependency on the data. In particular, this calls for the right
choice of a solution space H.

5.1 Hilbert Spaces

We will give a short introduction to the basic concepts of functional calculus. A more detailed
and application-oriented introduction to this field is for example Alt [2].

Definition 5.1

(a) Suppose V is a linear space. Then a mapping

‖·‖ : V → IR

is called norm on V if for all v, w ∈ V and µ ∈ IR, the following properties hold:

‖v‖ ≥ 0 and ‖v‖ = 0 ⇐⇒ v = 0

‖µv‖ = |µ| ‖v‖
‖v + w‖ ≤ ‖v‖+ ‖w‖

If there is a norm ‖ · ‖V defined on V , then V is a normed, lineare space.
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(b) A normed, linear space V is called complete if every Cauchy sequence in V converges
(in V , of course!).

(c) A complete, normed, linear space B is called Banach space.

Example:
Suppose Ω ⊂ IRn to be a bounded domain. Then C(Ω), together with the norm

‖v‖∞ = max
x∈Ω
|v(x)| ,

is a Banach space. /

Example:
The linear space C1(Ω), together with the norm

‖v‖1,∞ = ‖v‖∞ +

n∑
i=1

‖vxi‖∞ ,

is a Banach space. /

Definition 5.2

(a) Suppose V and W are normed, linear spaces with norms ‖·‖V and ‖·‖W respectively.
Then, a linear mapping L : V →W is called bounded if there is a constant c > 0, such
that

‖Lv‖W ≤ c ‖v‖V ∀v ∈ V .

(b) We denote the set of all bounded, linear mappings L : V →W with L (V,W ).

(c) V ′ = L(V, IR) is the dual space of V . The elements of V ′ are called functionals.

Theorem 5.3 A linear mapping L : V →W is continuous iff it is bounded.

Theorem 5.4 By

‖L‖ = sup
v∈V

‖Lv‖W
‖v‖V

, L ∈ L (V,W ) ,

a canonical norm is defined on L (V,W ).

Definition 5.5

(a) A mapping a(·, ·) : V × V → IR is called bilinear form (on V ) if it is linear in both
arguments.

(b) a(·, ·) is called symmetric if

a(v, w) = a(w, v) ∀v, w ∈ V .

(c) a(·, ·) is called positive definite if

a(v, v) ≥ 0 and a(v, v) = 0 ⇐⇒ v = 0 ∀v ∈ V .
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(d) a(·, ·) is called bounded if there is a constant Γ, such that

|a(v, w)| ≤ Γ‖v‖V ‖w‖V ∀v, w ∈ V .

Theorem 5.6 A bilinear form a(·, ·) is continuous iff it is bounded.

Theorem 5.7 A symmetric, positive definite bilinear form a(·, ·) fulfills the Cauchy–Schwarz
inequality

|a(v, w)| ≤ a(v, v)
1
2 · a(w,w)

1
2 ∀v, w ∈ V

and the triangle inequality

a(v + w, v + w)1/2 ≤ a(v, v)
1
2 + a(w,w)

1
2 ∀v, w ∈ V

Particularly, by

‖v‖ = a(v, v)
1
2 , v ∈ V,

a norm is defined, the so called energy norm.

Definition 5.8

(a) A symmetric, positive definite bilinear form is called dot product or scalar product.

(b) A linear space V together with a scalar product (·, ·) and the corresponding norm ‖ · ‖V
is called pre-Hilbert space.

(c) A complete pre-Hilbert space is called Hilbert space.

Example:
Qn together with the Euclidean scalar product (v, w) =

∑
i viwi is a pre-Hilbert space. The

completion IRn is a Hilbert space. /

Example:
The linear space

X = {v ∈ C(Ω) |
∫
Ω

v2(x) dx <∞} ,

together with the scalar product

(v, w)L2(Ω) =

∫
Ω

v(x)w(x) dx ,

is a pre-Hilbert space. /

Example:
The linear space

X = {v ∈ C1(Ω) | (v, v)H1(Ω) <∞} ,

together with the scalar product

(v, w)H1(Ω) = (v, w)L2(Ω) +
n∑
i=1

(vxi , wxi)L2(Ω) ,

is a pre-Hilbert space. /
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Example:
Consider α : Ω→ IR the piecewise continuous (i.e. continuous except for Riemann-measure-
zero sets) and suppose

0 < α0 ≤ α(x) ≤ α1 <∞ ∀x ∈ Ω

with α0, α1 ∈ IR. Then

X = {v ∈ C1(Ω) ∩ C(Ω) | v|∂Ω = 0, (v, v)H1(Ω) <∞} ⊂ HC

is a pre-Hilbert space with the energy scalar product

a(v, w) =

∫
Ω

α∇v · ∇w dx .

Theorem 5.9 Every pre-Hilbert space V is in some way up to an isomorphism uniquely
extendible to a Hilbert space H. V then is said to lie densely in H, and H is called completion
of V .

Theorem 5.10 Suppose V to be a linear space with norm ‖ · ‖V . On V there is exactly one
scalar product (·, ·), that induces ‖ · ‖V , i.e.

‖v‖V = (v, v)
1
2 ∀v ∈ V

if and only if ‖ · ‖V fulfills the parallelogram equation

‖v + w‖2V + ‖v − w‖2V = 2‖v‖2V + 2‖w‖2V ∀v, w ∈ V .

Example:
The norm ‖·‖1,∞ does not fulfills the parallelogram equation, so C1(Ω) in no Hilbert space!/

Before we go on to special function spaces, we want to exploit this abstract framework for
a bit to provide some fundamental statements . From now on, consider H to be a Hilbert
space equipped with a scalar product (·, ·) and the corresponding norm ‖ · ‖H = (·, ·)1/2.

Theorem 5.11 (Riesz representation theorem) For every l ∈ H ′, the variational prob-
lem

u ∈ H : (u, v) = l(v) ∀v ∈ H (5.5)

has a unique solution and it holds

‖u‖H = ‖l‖H′ .

Proof:
The proof for existence is a case of direct methods of variational calculus. We set J(v) = 1

2
(v, v) − l(v). We

can copy the proof to theorem 1.2 (page 3) verbatim to see the equivalence of (5.5) and the minimization
problem

u ∈ H : J(u) ≤ J(v) ∀v ∈ H . (5.6)

Thus, it is sufficient to show the existence of a unique solution.
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1. First, we will show, that J(v) is bounded from below, meaning there is a M ∈ IR, s.t.

−∞ < M ≤ J(v) ∀v ∈ H .

Because of the boundedness of l,
|l(v)| ≤ ‖l‖H′ ‖v‖H

and it follows, that

J(v) =
1

2
(v, v)− l(v) =

1

2
‖v‖2H − l(v)

≥ 1

2
‖v‖2H − |l(v)|

≥ 1

2
‖v‖2H − ‖l‖H′ ‖v‖H .

The parabola 1
2
‖v‖2H − ‖l‖H′ ‖v‖H is bounded from below for all ‖v‖H , and thereby J(v) as well.

2. Since J(v) is bounded from below, the infimum exists

β = inf
v∈H

J(v) .

By definition of the infimum, there is a minimal sequence (un)n∈IN ⊂ H, that is a sequence with the
property

J(un)→ β for n→∞ .

We show, that (un)n∈IN is a Cauchy sequence. First, we notice, that because of the convexity of J , i.e.

β ≤ J
(
un+um

2

)
≤ 1

2
(J(un) + J(um)) → β

J(un+um
2

) converges to β as well. From the parallelogram equation, we get

‖un − um‖2H = 2 ‖un‖2H + 2 ‖um‖2H − ‖un + um‖2H

= 4J(un) + 4J(um) + 4l(un + um)− 4
∥∥∥un + um

2

∥∥∥2

H

= 4J(un) + 4J(um)− 8

(
1

2

∥∥∥un + um
2

∥∥∥2

H
− l(un + um

2
)

)
= 4J(un) + 4J(um)− 8J(

un + um
2

)→ 0 .

Then (un)n∈IN is a Cauchy sequence and because of the completeness of H there is a u∗ ∈ H with

lim
n→∞

un = u∗ in H .

3. The continuity of J yields
β = lim

n→∞
J(un) = J(u∗) .

So u∗ is a solution to the minimization problem (5.6).

4. The solution u∗ is unique. If there were two solutions u1 and u2 of (5.5), then

(u1, v) = l(v) = (u2, v) ∀v ∈ H

so
(u1 − u2, v) = 0 ∀v ∈ H .

Insertion of v = u1 − u2 provides the claim.

5. ‖u‖H = ‖l‖H′ follows from the inequalities

‖l‖H′ = sup
v 6=0

|l(v)|
‖v‖H

= sup
v 6=0

|(u, v)|
‖v‖H

≤ ‖u‖H Cauchy–Schwarz

and

‖u‖2H = (u, u) = l(u) ≤ ‖l‖H′ ‖u‖H .
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Note:
Riesz’ representation theorem tells us, that every l ∈ H ′ can, via the scalar product, be
represented by a u ∈ H with equal norm. The Hilbert space H and its dual space H ′ are
isometrically isomorphic, this implies, amongst other things, that they are topologically or
algebraically indistinguishable. /

Corollary 5.12 Suppose l ∈ H ′ and a(·, ·) to be a symmetric bilinear form on H with the
property

γ‖v‖2H ≤ a(v, v) ∀v ∈ H (5.7)

where γ does not depend on v. Then the minimization problem

u ∈ H : J(u) ≤ J(v) ∀v ∈ H

for the energy functional

J(v) =
1

2
a(v, v)− l(v), v ∈ H ,

or respectively its variational formulation

u ∈ H : a(u, v) = l(v) ∀v ∈ H

has a uniquely determined solution. Furthermore

‖u‖H ≤
1

γ
‖l‖H′ .

Proof:
Because of (5.7), a(·, ·) is a scalar product on H and l ∈ H ′ is bounded with respect to the energy norm as
well. So we can apply 5.11 and get existence and uniqueness. The rest follows from

γ ‖u‖2H ≤ a(u, u) = l(u) ≤ ‖l‖H′ ‖u‖H .

Corollary 5.12 motivates the following

Definition 5.13 A bilinear form a(·, ·) is called (H-) elliptic or coercive if the estimates

γ‖v‖2H ≤ a(v, v), |a(v, w)| ≤ Γ‖v‖H‖w‖H ∀v, w ∈ H (5.8)

with constants γ,Γ > 0 hold.

Corollary 5.14 (best approximation) Suppose S is a closed subspace of H and w0 6∈ S.
Then there exists a w ∈ S with

‖w − w0‖H = min
v∈S
‖v − w0‖H ,
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Figure 5.2: best approximation in Hilbert spaces

and the following orthogonality holds:

(w0 − w, v) = 0 ∀v ∈ S .

Proof:
Fix J(v) = 1

2
(v, v)− `0(v) with `0(v) = (v, w0), then evidently

‖v − w0‖2H = 2 J(v) + (w0, w0) .

S is as a closed subspace again a Hilbert space. Thus, by the Riesz representation theorem (Theorem 5.11)
there exists exactly one w ∈ S with the property

J(w) ≤ J(v) ∀v ∈ S .

The orthogonality is precisely the equivalent variational formulation

w ∈ S : (w, v) = (w0, v) ∀v ∈ S .

We will now generalize the notion of corollary 5.12. The central idea is, that the bilinear
form no longer has to be symmetric. Note, that the variational problem is no longer based
upon a minimization problem!

Theorem 5.15 (Lax–Milgram lemma) Suppose a(·, ·) is H-elliptic (not necessarily sym-
metric!). Then the variational equation

u ∈ H : a(u, v) = l(v) ∀v ∈ H

has for every l ∈ H ′ a uniquely defined solution, and it holds

‖u‖H ≤
1

γ
‖l‖H′ .
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Proof:
1. We find ourselves an operator representation for the bilinear form. Suppose w ∈ H arbitrary. Then

fw := a(w, ·) ∈ H ′ ,

because fw is linear and continuous, since

|fw(v)| = |a(w, v)| ≤ Γ ‖w‖H ‖v‖H .

Then we also have
‖fw‖H′ ≤ Γ ‖w‖H .

Thus, by the Riesz representation theorem there is for every w ∈ H a Aw ∈ H with the property

(Aw, v) = fw(v) = a(w, v) ∀v ∈ H .

In this sense, the so-defined mapping

A : H → H

represents the bilinear form a(·, ·).

2. Properties of A:

• A is linear, because for all v ∈ H

(A(µ1w1 + µ2w2), v) = a(µ1w1 + µ2w2, v)

= µ1a(w1, v) + µ2a(w2, v)

= µ1(Aw1, v) + µ2(Aw2, v) .

• A is bounded, i.e. ‖Av‖H ≤ Γ ‖v‖H ∀v ∈ H, since

‖Av‖2H = (Av,Av) = a(v,Av) ≤ Γ ‖v‖H ‖Av‖H .

• A is inversely bounded, i.e. γ ‖v‖H ≤ ‖Av‖H ∀v ∈ H, since

γ ‖v‖2H ≤ |a(v, v)| = |(Av, v)| ≤ ‖Av‖H ‖v‖H

• A is injective, since Av = 0⇒ v = 0.

3. Properties of R(A) and R(A)⊥:

We define for A the image R(A) and its orthogonal complement R(A)⊥.

R(A) := {w ∈ H | ∃v ∈ H with w = Av}

R(A)⊥ := {v ∈ H | (w, v) = 0 ∀w ∈ R(A)}

• R(A) is closed, since from
(wn)n∈IN ∈ R(A) and wn → w0

follows with Avn = wn due to

‖wn − wm‖H = ‖A(vn − vm)‖H ≥ γ ‖vn − vm‖H ,

that (vn)n∈IN is a Cauchy sequence. Then vn → v0 converges, and from the continuity of A
follows Av0 = w0, so w0 ∈ R(A).

• We have R(A)⊥ = {0}, since for w0 ∈ R(A)⊥, that is

(w0, w) = 0 ∀w ∈ R(A) ,

follows

0 = (w0, w) = (w0, Av) ∀v ∈ H ,

in particular

0 = (w0, Aw0) = a(w0, w0) ≥ γ ‖w0‖2H .
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4. We will now show R(A) = H. For this, we use Corollary 5.14 with S = R(A) (R(A) is closed!).
Because if w0 ∈ H \R(A), there is a w ∈ R(A) with

(w0 − w, v) = 0 ∀v ∈ R(A) ,

so w0 − w ∈ R(A)⊥ and thereby w0 − w = 0, which contradicts w0 6∈ R(A).

5. Existence and uniqueness:

Since we now know that R(A) = H, for every w ∈ H there has to be a u ∈ H with Au = w. Choosing
in accordance to the Riesz representation theorem a w, such that

(w, v) = l(v) ∀v ∈ H ,

it follows, that
a(u, v) = (Au, v) = (w, v) = l(v) ∀v ∈ H .

The uniqueness simply follows from the injectivity of A. The stability estimate works just as in
corollary 5.12. 2

Solution Approximation via Galerkin Method. So much about existence and uniqueness
of solutions to variational equations. Now we go on to the approximation of u in closed
subspaces, so called Galerkin approximations.

Theorem 5.16 (Céa’s lemma) Suppose a(·, ·) is H-elliptic, l ∈ H ′ and S ⊂ H a closed
subspace of H. Then the variational problem

us ∈ S : a(us, v) = l(v) ∀v ∈ S

has exactly one solution us, and the following a priori error estimate holds

‖u− us‖H ≤
Γ

γ
inf
v∈S
‖u− v‖H ,

where u is the solution to the variational problem in H.

Proof:
1. Existence and uniqueness:

The uniqueness of the solution follows directly from the Lax–Milgram lemma, because S, as a closed
subspace of a Hilbert space, is again a Hilbert space.

2. Galerkin orthogonality:

Apparently
a(us, v) = l(v) = a(u, v) ∀v ∈ S ,

so
a(u− us, v) = 0 ∀v ∈ S .

Thereby the error is a-orthogonal on S.

3. Error estimate:

From
γ ‖u− us‖2 ≤ a(u− us, u)− a(u− us, us)︸ ︷︷ ︸

=0

= a(u− us, u)

= a(u− us, u)− a(u− us, v)︸ ︷︷ ︸
=0

= a(u− us, u− v)

≤ Γ ‖u− us‖ ‖u− v‖



5.2 Sobolev Spaces 57

for all v ∈ S, it directly follows, that

‖u− us‖ ≤
Γ

γ
‖u− v‖ .

5.2 Sobolev Spaces

5.2.1 Completion

In order to be able to apply the abstract results from the previous section to our minimization
problem (5.3), we need to choose an appropriate Hilbert space H as solution space. In doing
so, we come across the following dilemma.

a) The space of all functions v ∈ C1(Ω) with the property v|∂Ω = 0, together with the
norm ‖v‖1,∞, is, though complete, no Hilbert space. Because

‖v + w‖21,∞ + ‖v − w‖21,∞ 6= 2(‖v‖21,∞ + ‖w‖21,∞)

(exercise!) there is no scalar product, inducing ‖·‖1,∞.

b) As an example for a pre-Hilbert space we introduced on page 50 the space

X = {v ∈ C1(Ω) ∩ C(Ω) | v|∂Ω = 0, (v, v)H1(Ω) <∞} (5.9)

with the scalar product

(v, w)H1(Ω) = (v, w)L2(Ω) +
n∑
i=1

(vxi , wxi)L2(Ω) .

This space might be larger than our next best solution space HC for the deflected
membrane (cf. page 3); but again, X is not complete.

Example:
To see this, consider the following counter-example. Suppose Ω = (−1, 1). The se-
quence (vk)k∈IN ⊂ X defined by

vk(x) =


1 + x −1 ≤ x ≤ − 1

n

1− 1
2n −

n
2x

2 − 1
n ≤ x ≤ + 1

n

1− x + 1
n ≤ x ≤ 1

is a Cauchy sequence with respect to ‖·‖H1(Ω) and converges uniformly to

v∗(x) =

{
1 + x −1 ≤ x ≤ 0

1− x 0 ≤ x ≤ 1

but v∗ 6∈ X, since v∗ 6∈ C1(Ω) (exercise). /

To turn the pre-Hilbert space X from (5.9) into a Hilbert space, we need to complete X.
We fix

H1
0 (Ω) = completion of X with respect to ‖·‖H1(Ω) = (·, ·)H1(Ω).

and now can choose H = H1
0 (Ω) as our solution space. Unfortunately, we do not yet know,

how such a solution, or more general, a function v ∈ H, might look like.
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5.2.2 Fundamental properties of Sobolev spaces

H1
0 (Ω) is a special Sobolev space. In the following, we will define additional Sobolev spaces

by completion and give some basic properties. If you want to learn more, you could try
Alt [2]. Even more is written in Adams [1].

1. Equivalence classes. The elements of Sobolev spaces are equivalence classes [v] of
functions. The corresponding equivalence relation is given by

v1 ∼ v2 ⇐⇒ meas{x ∈ Ω | v1(x) 6= v2(x)} = 0 .

Here, meas means the n-dimensional Lebesgue-measure.

Definition 5.17 Ω′ ⊂ IRn is called (Lebesgue-)measure-zero or null set if there is for every
ε > 0 a set of square boxes {Ik | k ∈ IN}, such that

Ω′ ⊂
⋃
k∈IN

Ik and 0 ≤
∑
k∈IN

meas{Ik} < ε .

If some assertion is to be true for all x ∈ Ω except for a Lebesgue-null set, we say the
assertion is true almost everywhere (a.e.) in Ω.

Note:
In contrast to the Riemann-measure, countably infinite boxes are allowed! /

Example:
Every countable set Ω′ = {zk ∈ IRn | k ∈ IN} is a Lebesgue-null set. /

First of all, we characterize the Sobolev space, which is generated by completion of the
continuous, square-integrable function.

Theorem 5.18 Through completion of

X = {v ∈ C(Ω) |
∫
Ω

v2 dx <∞}

with the scalar product

(v, w)L2(Ω) =

∫
Ω

vw dx

one obtains the space of equivalence classes [v] of (Lebesgue-measurable) functions v with the
property

‖v‖L2(Ω) =

∫
Ω

|v(x)|2 dx

 1
2

<∞ .

Example:
Dirichlet’s function

v =

{
1 x ∈ Q
0 x ∈ IR \Q

lies in L2(IR) and it holds v ∈ [0]. /
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All equivalent functions have the same norm! To simplify things, we will from now on no
longer differentiate between [v] and its representative v ∈ [v]. But be careful!

Finally, one last approximation result.

Theorem 5.19 The subspace

C∞0 (Ω) = {v ∈ C∞(Ω) | supp v ⊂ Ω}

of infinitely often differentiable functions with compact support in Ω

suppϕ = {x ∈ Ω |ϕ(x) 6= 0}

lies dense in L2(Ω), i.e for all v ∈ L2(Ω) and every ε > 0 there is a ϕε ∈ C∞0 with the
property

‖v − ϕε‖L2(Ω) ≤ ε .

Proof:
see Alt [2], page 73. 2

2. Weak Derivatives. Functions v ∈ L2(Ω) are only determined up to (Lebesgue)-null sets
and thus certainly no longer differentiable in the classical sense. So we generalize our notion
of derivative.

Definition 5.20 (weak derivative) Suppose u ∈ L2(Ω). If there is a g ∈ L2(Ω) with the
property ∫

Ω

uϕxk dx = −
∫
Ω

gϕ dx ∀ϕ ∈ C∞0 (Ω) ,

uxk := g is called weak derivative of u in direction xk.

Note:
The weak derivative fulfills by definition the product rule (Green’s formula!). /

Example:
We consider the piecewise linear spline functions

S = {v ∈ C[0, 1] | v[xi−1,xi] ∈ Π1, i = 1, . . . , N}

(Π1 denotes the polynomials of 1st order) with respect to a grid

0 = x0 < x1 < x2 < . . . < xN = 1 .

Apparently v ∈ S is almost never classically differentiable. In the weak sense, however, it is:
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With ϕ ∈ C∞0 (0, 1) we have

1∫
0

vϕ′ dx =
N∑
i=1

xi∫
xi−1

vϕ′ dx

=

N∑
i=1

− xi∫
xi−1

v′ϕ dx

+

N−1∑
i=1

(v(xi)
links − v(xi)

rechts)︸ ︷︷ ︸
=0

ϕ(xi)

= −
1∫

0

gϕ dx ,

with g(x) := v′(x) ∀x 6= xi. /

Example:
Consider H : [−1, 1]→ IR given by

H(x) =

{
0 −1 ≤ x < 0

1 0 ≤ x ≤ 1
(Heaviside function) .

To see, whether H is weakly differentiable, we choose ϕ ∈ C∞0 (−1, 1) and calculate

1∫
−1

Hϕ′ dx = 0 +

1∫
0

1 · ϕ′ dx = ϕ(1)− ϕ(0) = −ϕ(0) =: −δ0ϕ .

It appears, that by δ0ϕ = ϕ(0) a linear mapping from C∞0 (−1, 1) to IR is defined. This
mapping is called Dirac delta distribution. δ0 is not defined as a mapping from L2(−1, 1)
to IR, so there is no g ∈ L2(−1, 1) with the property

∫ 1
−1 gϕ dx = δ0ϕ. The Heaviside side

function H is thus not weakly differentiable. /

Recall the multi-index notation ∂β = ∂
∂xβ1

...∂xβk
, βi = 1, . . . , n, |β| = k.

Definition 5.21 (Sobolev spaces) The completion of

X = {v ∈ C∞(Ω) | (v, v)Hm(Ω) <∞}

with respect to the norm, induced by the scalar product

(v, w)Hm(Ω) =
∑
|β|≤m

(∂βv, ∂βw)

is the Sobolev space Hm(Ω).
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Theorem 5.22 The Sobolev space Hm(Ω) consists of all (equivalence classes of) func-
tions v ∈ L2(Ω) with weak derivatives

∂βv ∈ L2(Ω), |β| ≤ m .

Hm(Ω) is a Hilbert space with the scalar product

(v, w)m =
∑
|β|≤m

(∂βv, ∂βw) .

More details are given in Alt [2] on pages 31 ff. and 78.

Note:
By construction, C∞(Ω) ∩Hm(Ω) lies dense in Hm(Ω). /

3. Boundary Conditions in the Weak Sense. We have seen, that functions u ∈ L2(Ω) are
only determined up to (Lebesgue-)null sets. Unfortunately, the boundary ∂Ω is a null set.
But then, what sense should for example Dirichlet boundary conditions v|∂Ω = 0 make for
functions v ∈ H1

0 (Ω), that do not lie in C(Ω)? A first answer, for the case

Ω = IRn
+ = {(x, y) |x ∈ IRn−1, y > 0}, n ∈ IN ≥ 2

with boundary ∂Ω = IRn−1, gives the following trace theorem.

Theorem 5.23 (trace theorem in the half space) Suppose Ω = IRn
+. Then, there is a

bounded linear mapping

tr : H1(Ω)→ L2(∂Ω)

with the property

tr v = v|∂Ω ∀v ∈ H1(Ω) ∩ C(Ω) .

Proof:
We will later see, that for smoothly bounded domains the linear space

X = {u|Ω | u ∈ C∞0 (IRn)}

lies dense in H1(Ω). The boundary ∂Ω = IRn−1 of Ω = IRn
+ is extremely smooth. We set

tr v = v|∂Ω ∀v ∈ X

and want to show now, that for a proper c > 0 the estimate

‖ tr v‖L2(∂Ω) ≤ c‖v‖H1(Ω) ∀v ∈ X

holds. To this, choose any v ∈ X.
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||
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Figure 5.3: cut-off function ϕ

1. Localization:

First, we construct a cut-off function ϕ ∈ X with the property

ϕ(x, y) =

{
1 0 ≤ y ≤ 1

2

0 1 ≤ y
∀(x, y) ∈ IRn

+ .

The for w := ϕv ∈ C∞(IRn
+)

w(x, 0) = w(x, y)−
y∫

0

wy(x, s) ds .

Integration over y from 0 to 1 yields

w(x, 0) =

1∫
0

w(x, y) dy −
1∫

0

1 ·
y∫

0

wy(x, s) ds dy .

From the product rule, we get

w(x, 0) =

1∫
0

w(x, y) dy −
1∫

0

(1− y)wy(x, y) dy .

Young’s inequality ((a+ b)2 ≤ 2a2 + 2b2) and the Cauchy–Schwarz inequality provide

w2(x, 0) ≤ 2

1∫
0

12 dy ·
1∫

0

w2(x, y) dy + 2

1∫
0

(1− y)2 dy

1∫
0

w2
y(x, y) dy

= 2

∫
IR+

w2(x, y) dy +
2

3

∫
IR+

w2
y(x, y) dy .

Integration over x yields∫
IRn−1

w2(x, 0) dx ≤ 2

∫
IRn+

w2(x, y) d(x, y) + 2

∫
IRn+

w2
y(x, y) d(x, y) ,

so, because of trw = w|∂IRn+
,

‖trw‖2L2(∂IRn+) ≤ 2(‖w‖2L2(IRn+) + ‖wy‖2L2(IRn+)) .
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2. Stability estimate for v ∈ X
Inserting w = vϕ provides because of ϕ|∂IRn

+
≡ 1

trw = tr v .

Furthermore∫
IRn+

w2 d(x, y) =

∫
IRn+

ϕ2v2 d(x, y) ≤ max
(x,y)∈IRn+

{ϕ(x, y)}
∫

IRn+

v2 d(x, y) ≤ ‖v‖2L2(IRn+)

and ∫
IRn+

w2
y d(x, y) =

∫
IRn+

(ϕyv + vyϕ)2 d(x, y)

≤ 2

∫
IRn+

ϕ2
yv

2 + v2
yϕ

2 d(x, y)

≤ 2( max
(x,y)∈IRn+

{ϕ2
y(x, y)} ‖v‖2L2(IRn+) + max

x∈IRn+

{ϕ2(x)} ‖vy‖2L2(IRn+))

≤ c ‖v‖2H1(IRn+) .

All in all, we get

‖tr v‖2L2(∂Ω) ≤ c ‖v‖
2
H1(Ω) ∀v ∈ X . (5.10)

3. Denseness approach:

Suppose v ∈ H1(Ω). Then there is a sequence (vk)k∈IN ∈ X with

‖v − vk‖H1(Ω) → 0 .

So, (vk)k∈IN is a Cauchy sequence in H1(Ω). Thanks to

‖tr vk − tr vj‖L2(∂Ω) ≤ c ‖tr vk − tr vj‖H1(Ω)

tr vk = vk|∂Ω
is a Cauchy sequence in L2(∂Ω). v∗ ∈ L2(∂Ω) shall be the limit. Then we set tr v := v∗.

This definition is independent of the choice of the sequence (vk)k∈IN (check). All vk ∈ X meet the
estimate (5.10). Passing to the limit, together with the continuity of the norm, provides

‖tr v‖L2(∂Ω) ≤ c ‖v‖H1(Ω) ∀v ∈ H1(Ω) ,

that is the continuity of tr : H1(Ω)→ L2(Ω). Finally, to show that

tr v = v|∂Ω ∀v ∈ H1(Ω) ∩ C(Ω)

holds, we need to construct for every v ∈ H1(Ω)∩C(Ω) a sequence (vk)k∈IN ∈ X, converging to v, and
fulfilling additionally the property

vn|∂Ω → v|∂Ω in L2(Ω) .

The technical set of tools to this are to be found in Alt [2] in section 2.9 and 2.12. 2

One can generalize the trace theorem in the half-space on domains with Lipschitz boundary.

Definition 5.24 (Lipschitz boundary) A bounded domain Ω ⊂ IRn has a Lipschitz boundary
if there are finitely many open sets Oi and a number ε > 0, such that for all x ∈ ∂Ω the ball
Kε(x) lies in some Oi and Oi ∩ Ω = Oi ∩ Ωi holds. Here

Ωi = {(x, y) ∈ IRn |x ∈ IRn−1, y ∈ IR, y < ϕi(x)}

with Lipschitz-continuous ϕi, that is

|ϕi(x1)− ϕi(x2)| ≤ L|x1 − x2|

for some fixed (Lipschitz-)constant L ∈ IR.
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Ω

Figure 5.4: slit circular domain

Example:
The boundary ∂Ω of the slit circular domain in figure 5.4 is not Lipschitz. Note: In this

case, for v ∈ C(Ω) the boundary values v|∂Ω
are not defined just like that (double values for

y = 0, x ∈ (0, 1))! /

Theorem 5.25 (Trace theorem for Lipschitz domains) Let Ω ⊂ IRn be a domain with
Lipschitz boundary. Then for every v ∈ H1(Ω) there exists a sequence (vk)k∈IN,

(vk)k∈IN ⊂ {w|Ω | w ∈ C
∞
0 (IRn)}

with the property
v = lim

k→∞
vk in H1(Ω) .

The trace operator tr : H1(Ω)→ L2(∂Ω)

tr v = lim
k→∞

vk|∂Ω in L2(∂Ω) ,

is well-defined and bounded. Furthermore

tr v = v|∂Ω ∀v ∈ H1(Ω) ∩ C(Ω) .

Proof:
See Alt [2], page 190. 2

Note:
This theorem can be tightened to

‖tr v‖
H

1
2 (∂Ω)

≤ c ‖v‖H1(Ω) .

The Sobolev space (of rational order!) H
1
2 (∂Ω) is exactly the right trace space, since the

trace operator tr : H1(Ω) → H
1
2 (∂Ω) is surjective, i.e. for every g ∈ H

1
2 (∂Ω) there is at

least one v ∈ H1(Ω) with the property tr v = g. /
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Let us go back to H1
0 (Ω) for awhile.

Theorem 5.26 The subspace

C∞0 (Ω) ⊂ H1
0 (Ω)

lies dense in H1
0 (Ω).

So we could also have defined H1
0 (Ω) directly as completion of C∞0 (Ω) with respect to ‖ ·

‖H1(Ω). Usually it is done that way.

Note:
Apparently by Theorem 5.25 we have

tr v = 0 ∀v ∈ H1
0 (Ω)

in the trace operator sense. Equivalently,

H1
0 (Ω) = {v ∈ H1(Ω) | tr v = 0 } .

So that is how to understand zero-boundary conditions. /

We have seen that functions v ∈ Hk(Ω), at least for large k, show a similar behaviour as
continuous functions (boundary values). This leads to the question, how big we need k > m,
in order for

v ∈ Hk(Ω) =⇒ v ∈ Cm(Ω)

to hold. The answer is the following embedding theorem

Theorem 5.27 (Sobolev embedding theorem) Let Ω ⊂ IRn be a bounded domain with
Lipschitz boundary. If v ∈ Hk(Ω) with

k > m+
n

2
, (5.11)

follows that
v ∈ Cm(Ω) (there exists a v ∈ [v] ∩ Cm(Ω))

and
sup
x∈Ω
|∂βv| ≤ c ‖v‖Hk(Ω) ∀|β| ≤ m .

Proof:
See Alt [2], page 244. 2

Note:
So H1(Ω) ⊂ C(Ω) if n = 1. As we have only an equality in (5.11) for n = 2, this is no longer
the case for n ≥ 2. There are counterexamples (exercise). /
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Theorem 5.28 (Rellich selection theorem) Let Ω ⊂ IRn be a bounded domain with Lips-
chitz boundary. If (vk)k∈IN ⊂ Hm+1(Ω) is bounded, that is

‖vk‖Hm+1 ≤ c ∀k ∈ IN ,

then there exists a subsequence
(
vkj
)
kj∈IN

and a v ∈ Hm+1(Ω), such that

vkj → v , for j →∞ in Hm(Ω) .

Proof:
For those familiar with functional calculus: Hm+1(Ω) is reflexive, so a subsequence

(
vkj
)
kj∈IN

converges

weakly in Hm+1(Ω) to a v ∈ Hm+1(Ω). The rest can be found in Alt [2], page 184. 2

5.3 Weak Solutions of Elliptic Boundary Value Problems

As a solution space for our minimization problem (5.3), or more precisely for its variational
formulation

u ∈ H : a(u, v) = l(v) ∀v ∈ H ,

we have now identified H = H1
0 (Ω). In order to apply the Riesz representation theorem,

we must make sure that a(·, ·) and l fulfill their respective preconditions. Before that, we
declare the following abbreviations

‖v‖m,Ω = ‖v‖Hm(Ω) ‖v‖0,Ω = ‖v‖L2(Ω) .

If it is clear, that the norms relate to Ω, we sometimes omit the domain in the index. We
also write

(v, w) = (v, w)L2(Ω) (∇v,∇w) =
n∑
k=1

(vxk , wxk) .

Lemma 5.29 Let f ∈ L2(Ω). Then

l(v) = (f, v) (5.12)

is a bounded functional on H = H1
0 (Ω) and ‖l‖H′ ≤ ‖f‖0 holds.

Proof:
The Schwarz inequality provides v ∈ H1

0 (Ω)

|l(v)| ≤ ‖f‖0 ‖v‖0 ≤ ‖f‖0 ‖v‖1
and thus the claim. 2

Lemma 5.30 (Poincaré–Friedrich Inequality) Let Ω be bounded and 0 < α0 ≤ α(x) ≤ α1 <
∞ almost everywhere in Ω. Then there is a γ > 0, such that the bilinear form

a(u, v) =

∫
Ω

α∇u · ∇v dx (5.13)

fulfills the Poincaré–Friedrich inequality

γ ‖v‖20 ≤ a(v, v) ∀v ∈ H1
0 (Ω) .
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Proof:
Because of α(x) ≥ α0 > 0, almost everywhere, we have

a(v, v) ≥ α0

∫
Ω

|∇v|2 dx .

So it suffices to find a c > 0, such that

‖v‖20 ≤ c‖ |∇v| ‖
2
0 (5.14)

holds. We now choose an open square Q = (a, b) × (a, b) with Ω ⊂ Q and extend an arbitrarily fixed
v ∈ C∞0 (Ω) onto v ∈ C∞0 (Q) by prescribing it to be zero everywhere else. Then

v(x1, x2) = v(a, x2) +

x1∫
a

vx1(ξ, x2) dξ =

x1∫
a

vx1(ξ, x2) dξ

Cauchy–Schwarz

≤

 b∫
a

12 dx


1
2

·

 x1∫
a

v2
x1

(ξ, x2) dξ

 1
2

.

Integration provides

‖v‖20 =

b∫
a

b∫
a

v2(x1, x2) dx1 dx2

≤ (b− a)2

b∫
a

b∫
a

v2
x1

(ξ, x2) dξ dx2

≤ (b− a)2 ‖ | ∇v | ‖20 .

As a corollary of the Lax–Milgram lemma, we now obtain

Theorem 5.31 Let H = H1
0 (Ω), a(u, v) =

∫
Ω α∇u · ∇v dx and l(v) = (f, v) given as

above in (5.13) and (5.12) respectively. Also let 0 < α0 ≤ α(x) ≤ α1 < ∞, almost
everywhere, and f ∈ L2(Ω). Then, the variational problem

u ∈ H : a(u, v) = l(v) ∀v ∈ H (5.15)

is uniquely solvable and (with γ from lemma 5.30)

‖u‖1 ≤
1

γ
‖f‖0

holds.

Proof:
From lemma 5.29 l ∈ H ′. Furthermore a(·, ·) is obviously symmetric and bilinear. Due to lemma 5.30 and
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because of

|a(v, w)| ≤ α1

∫
Ω

|∇v · ∇w| dx

≤ α1

∫
Ω

|vx1 | |wx1 |+ |vx2 | |wx2 | dx

Cauchy-Schwarz in IR2

≤ α1

∫
Ω

(|vx1 |
2 + |vx2 |

2)
1
2 · (|wx1 |

2 + |wx2 |
2)

1
2 dx

Cauchy-Schwarz in L2(Ω)

≤ α1

∫
Ω

(|vx1 |
2 + |vx2 |

2) dx

 1
2

·

∫
Ω

(|wx1 |
2 + |wx2 |

2) dx

 1
2

≤ α1 ‖v‖1 · ‖w‖1
a(·, ·) is H-elliptic. 2

Note:
According to theorem 5.31 the variational problem (5.15) is posed correctly: The solution
operator f → u as a mapping from L2(Ω) to H1

0 (Ω) is continuous. /

Note:
If the solution of (5.15) is a smooth function, namely u ∈ C2(Ω) ∩H1

0 (Ω), Green’s formula
provides that u is also a classical solution of the boundary value problem

−div(α∇u) = f in Ω

u = 0 on ∂Ω .
(5.16)

Definition 5.32 The solution u to the variational problem (5.15) is called weak solution of
the boundary value problem (5.16).

We now want to deduce the weak formulation of some other boundary value problems. The
bilinear form a(·, ·) has to be chosen in each case in such a way, that for smooth enough
solutions Green’s formula leads back to the original boundary value problem.
If a(·, ·) is symmetric and positive definite on a (w.r.t. energy norm!) closed solution space
H ⊂ H1(Ω), then there is a uniquely defined weak solution (Riesz). If a(·, ·) is H-elliptic in
the sense of (5.8), we do not need the symmetry and it suffices to know, that H is closed
w.r.t. ‖ · ‖1, and in addition, the H1(Ω)-stability follows (Lax–Milgram).

Example:
We consider the weak form of the boundary value problem (5.16) with

α(x) =

(
α11 α12

α21 α22

)
(x) .

For every x ∈ Ω let α(x) be a symmetric matrix. For the eigenvalues λ1(x), λ2(x) suppose

0 < α0 ≤ λ1(x), λ2(x) ≤ α1 o.e. .

Then the bilinear form

a(v, w) =

∫
Ω

(α∇v) · ∇w dx

is H1
0 (Ω)-elliptic. /
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Example:
We consider the boundary value problem

−∆u+ β · ∇u = f in Ω

u = 0 on ∂Ω .

The corresponding weak formulation leads to the bilinear form

a(v, w) = (∇v,∇w)︸ ︷︷ ︸
symmetric

+ (β · ∇v, w)︸ ︷︷ ︸
not symmetric

.

This bilinear for in not symmetric, but H1
0 (Ω)-elliptic (exercise). /

Example:
We consider the boundary value problem

−∆u+ λu = f in Ω

∂

∂n
u = 0 on Ω

(5.17)

with λ > 0. The corresponding weak formulation (5.15) leads to the bilinear form

a(v, w) = (∇v,∇w) + λ(v, w)

and to the solution space H = H1(Ω). Apparently a(v, w) H1(Ω)-elliptic for λ > 0.
In contrast to Dirichlet boundary conditions Neumann boundary conditions are not forced
by the choice of a subspace of H1(Ω). Of course they cannot be, because ∇u ∈ (L2(Ω))2 has
no boundary conditions! Smooth enough solution of the variational problem due to Green’s
formula automatically fulfill homogeneous Neumann conditions (exercise)!
Let us briefly consider the case λ = 0. a(v, w) = (∇v,∇w) is not positive definite on H1(Ω),
since

(∇v,∇w) = 0 ∀w ∈ H1(Ω) ⇐⇒ v = const. .

Thus, we identify functions, that only differ by a constant,

[v] = {w | w(x)− v(x) = const., almost everywhere in Ω} .

We can define a scalar product on the quotient space H of the thus induced equivalence
classes [v] via

a([v], [w]) = (∇v,∇w), v ∈ [v], w ∈ [w]

If and only if the (already known!) compatibility condition∫
Ω

f dx = 0

is fulfilled by f ∈ L2(Ω),

l([v]) =

∫
Ω

fv dx, v ∈ [v]
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defines a linear functional.
In this case, the variational problem

[u] ∈ H : a([u], [v]) = l([v]) ∀v ∈ H

has a uniquely determined solution [u]. All functions u ∈ [u] are solutions to the original
problem with λ = 0. /

Example:
We will now consider inhomogeneous boundary conditions. To this end, let ∂D ∪ ∂N = ∂Ω
be a non-overlapping partition of the boundary into two parts of non-zero length each. The
given boundary value problem is

−∆u = f in Ω

u = gD on ∂D

∂u

∂n
= gN on ∂N .

(5.18)

One gets a weak formulation (5.15) by

a(v, w) =

∫
Ω

∇v · ∇w dx

and

l(v) =

∫
Ω

fv dx+

∫
∂N

gNv dσ .

As reasonable solution space is

X = {v ∈ H1(Ω) | tr∂D v = gD} .

Problem: X is no linear space! We now assume, that at least X 6= ∅, i.e. that there is a
w0 ∈ H1(Ω) with the property

tr∂D w0 = gD

(This is the case if and only if gD ∈ H
1
2 (∂D)). Then we calculate u0 from

u0 ∈ H : a(u0, v) = l(v)− a(w0, v) ∀v ∈ H

with the Hilbert space

H = {v ∈ H1(Ω) | tr∂D v = 0}

and get a (uniquely determined!) solution u = u0 + w0.
We have seen, that gD has to fulfill certain conditions. Which conditions on gN are necessary
for solvability? /
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6.1 Construction of FE Spaces

Consider the variational equality

u ∈ H : a(u, v) = l(v) ∀v ∈ H (6.1)

a closed subspace H ⊂ H1(Ω), an H-elliptic bilinear form a(·, ·), i.e.

γ‖v‖21 ≤ a(v, v) , |a(v, w)| ≤ Γ‖v‖1‖w‖1, ∀v, w ∈ H

and l ∈ H ′. The Céa-Lemma 5.16 implies directly

Theorem 6.1 Let S ⊂ H be a closed subspace. Then uS given by

uS ∈ S : a(uS , v) = l(v) ∀v ∈ S

is unique, and the following estimate holds

‖u− uS‖1 ≤
Γ

γ
inf
v∈S
‖u− v‖1 .

Note:
This class of approximation methods is called Galerkin method. If a(·, ·) is symmetric,
they are called Ritz–Galerkin method. /

For S we want to consider finite elements.

Definition 6.2 Let Ω ⊂ IR2 have a polygonal boundary. A set T of triangles t is called a
triangulation of Ω if

(i) Ω =
⋃
t∈T

t

(ii) The intersection of two triangles from T is either a common edge, a common node or
empty.

The set of all inner edges is called ET . The set of all inner nodes NT .

Definition 6.3 Let Πm denote the set of all polynomials of m-th order. Then

S(m) := {v ∈ C(Ω) | v|t ∈ Πm ∀t ∈ T } .

is the space of the (polynomial) m-th order finite elements (relating the triangulation T ).

71
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allowed forbidden

Figure 6.1: triangulation and forbidden triangle-decomposition

Note:
Aside from trivial cases S(m) 6⊂ C1(Ω). In the case m = 1, 2, 3, . . ., one speaks of (piecewise)
linear, quadratic, cubic, . . . finite elements. /

To construct a basis of S(m), we first want to clarify how to determine a polygon P ∈ Πm .

��
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�� ��

��

�� ��

��

��

��

k=3

��

��

��

��

�� ��

�� ��

��

k=2k=1

Figure 6.2: nodes

Lemma 6.4 Let m ≥ 0. Arrange

s = 1 + 2 + · · ·+ (m+ 1) =
(m+ 1)(m+ 2)

2

nodes N (m)(t) = {z1, z2, . . . , zs} on m+ 1 parallel lines on the triangle t, as shown in figure
6.2. Then the interpolation problem

P ∈ Πm : P (zi) = Pi ∀i = 1, . . . , s

has a unique solution for all node values Pi.

Proof:
By induction:
The case m = 0 is clear. Let the claim be true for m − 1 ≥ 0. Without loss of generality let the edge with
the nodes z1, z2, . . . , zm+1 lie on the x-axis. Then the lines above are {(x, y) | y = yi}, with positive yk ∈ IR,
k = 1, . . . ,m. As we know, the univariate interpolation problem

P0 ∈ Πm : P0(zi) = Pi ∀i = 1, . . . ,m+ 1

has a unique solution for all Pi, which we can extend, e.g. constant in y-direction, to all IR2. By induction
hypothesis there is exactly one Q0 ∈ Πm−1 with the property

Q0(zi) =
1

yki
(Pi − P0(zi)) ∀i = m+ 2, . . . , s .

Thereby ki denotes the line which contains the node zi. Then P (x, y) = P0(x, y) + yQ0(x, y) is the unique
solution. 2
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We now consider the whole triangulation T .

Corollary 6.5 Let

N (m) =
⋃
t∈T
N (m)(t).

Then the interpolation problem

v ∈ S(m) : v(p) = vp ∀p ∈ N (m) (6.2)

has a unique solution for all node values vp.

Proof:
For each triangle t ∈ T , the polynomial Pt ∈ Πm is given uniquely by

Pt ∈ Πm : Pt(p) = vp ∀p ∈ t ∩N (m)

As all corners are nodes, the adjacent triangles have the same value in these points. If two triangles t1, t2
share the same edge e = t1 ∩ t2 , Pt1(x) = Pt2(x) ∀x ∈ e = t1 ∩ t2 holds, as on each edge lie m+ 1 nodes. In
this way

v(x) = Pt(x) falls x ∈ t

defines a function v ∈ S(m), which solves the interpolation problem, which thus is a solution to (6.2). The
uniqueness follows by contradiction. 2

In the case m = 1 we have that

N (1) = {p | p ∈ Ω is a corner of a triangle t ∈ T } .

Definition 6.6 By solving the interpolation problem

λp ∈ S(m) : λp(q) = δpq ∀q ∈ N (m) (Kronecker-δ)

for all p ∈ N (m) one gets the nodal basis

Λ(m) = {λp | p ∈ N (m)}.

of S(m). If p is on the boundary of t, λp|t ∈ Πm is called formfunction.

Note:
To justify this notation we have to check whether Λ(m) is a basis at all. Obviously each

v ∈ S(m) has the representation

v =
∑

p∈N (m)

v(p)λp .

The uniqueness follow from Corollary 6.5. In the linear case (m=1) the nodal base functions
are illustrated in figure 6.3. /
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p

λ
λ

p

2 D

1

p

1 D

Figure 6.3: nodal basis functions for m = 1

We now consider the variational equality (6.1) in the case H = H1
0 (Ω), an H1

0 (Ω)-elliptic
bilinear form a(·, ·) an l ∈ H ′. For example

a(v, w) = (α∇v,∇w) =

∫
Ω

α∇v · ∇w dx

with 0 < α0 ≤ α(x) ≤ α1 <∞ a.e. on Ω, and

l(v) = (f, v) =

∫
Ω

f v dx

with f ∈ L2(Ω) fulfill these assumptions. To approximate the solutions u of our model
problem (6.1) we now choose

Sh := {v ∈ S(m) | v|∂Ω = 0} (6.3)

The discretization parameter h,

h = max
t∈Th

diam t,

describes the fineness of the mesh. Often h is called stepsize.

Theorem 6.7 Sh is a closed subspace of H1
0 (Ω).

Proof:
Exercise. 2

Application of the Ritz–Galerkin method according to Theorem 6.1 provides the variational
equality

uh ∈ Sh : a(uh, v) = l(v) ∀v ∈ Sh . (6.4)

Let

Nh = N (m) ∩ Ω
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denote the set of the inner nodes of Th, then apparently

Λh = Λ(m) ∩H1
0 (Ω) = {λp | p ∈ Nh}

is the nodal basis of Sh, as the values on the boundary nodes are determined by the boundary
conditions. Inserting of the nodal basis representation

uh =
∑
p∈Nh

upλp

and of v = λq, q ∈ Nh, provides a linear system of equations∑
p∈Nh

a(λp, λq)up = l(λq) ∀q ∈ Nh

for the unknown coefficients up = u(p). By defining

A = (ap,q)p,q∈Nh ap,q = a(λq, λp)

b = (bp)p∈Nh bp = l(λp)

U = (up)p∈Nh

the variational problem (6.4) can be written as the equivalent system

AU = b . (6.5)

We now note some basic properties of A.

Theorem 6.8 If the bilinear form a(·, ·) is elliptic, A positive definite. If the bilinear form
a(·, ·) is symmetric, A is symmetric as well.

Proof:
Exercise. 2

We will come back to the solution of the (large!) system (6.5) after investigating the con-
vergence of the method.

6.2 Error Estimates

6.2.1 Error Estimates in the H1-Norm

We want to know, how the

discretization error: ‖u− uh‖1
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behaves if we approximate H1
0 (Ω) by Sh ⊂ S(m) (see (6.3)). By theorem 6.1 it is enough to

estimate the

approximation error: inf
v∈Sh

‖u− v‖1

We want to start with the easiest possible case with

m = 1, Ω = (a, b) ⊂ IR .

Then from Th we get the grid

a = x0 < x1 < . . . < xN−1 < xN = b

and we set
ti = [xi−1, xi], hi = xi − xi−1, h = max

i=1,...,N
hi .

Sh then denotes the space of the continuous, piecewise linear functions. The following
methods are chosen such that they can be transferred to the two- and three-dimensional
case.

Theorem 6.9 For each u ∈ H1
0 (Ω) we have

inf
v∈Sh

‖u− v‖1 → 0

as h→ 0.

Proof:
Exercise. 2

Note:
The theorem 6.9 together with the Céa Lemma 5.16 implies the convergence

‖u− uh‖1 → 0

of the FE approximations uh as h → 0. Notice that there is no need for further regularity
assumptions except those of the existence and uniqueness theorem 5.31! /

We now want to know, how fast the approximations converge. To acquire the appropriate
sharper statements we need the

regularity assumption: u ∈ H2(a, b).

By the Sobolev embedding theorem 5.27 we have the continuous embedding

H2(a, b) ⊂ C[a, b]

(This is also true in two or three dimensional spaces, but not in four!) Thus by corollary 6.5
the interpolation operator Ih : H2(Ω)→ Sh given by

Ihv ∈ Sh : Ihv(xi) = v(xi) ∀i = 0, . . . , N
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is well defined. Apparently
inf
v∈Sh

‖u− v‖1 ≤ ‖u− Ihu‖1

holds. Therefore it suffices to estimate the

interpolation error: ‖u− Ihu‖1

This is done in four steps.

• Step 1: Localization. By the linearity of integrals we have

‖u− Ihu‖21,Ω =
N∑
i=1

‖u− Ihu‖21,ti

• Step 2: Transformation to the unit interval. For each fixed i we transform the
unit interval T = [0, 1] affinely to ti by

ti = Fi(T ), x = Fi(ξ) = xi−1 + hiξ, ξ = F−1(x) = h−1
i (x− xi−1)

and set

v̂(ξ) = v(Fi(ξ)) = v(x) ∀v ∈ H2(ti) .

By the transformation rule for integrals

‖v‖20,ti =

xi∫
xi−1

v(x)2 dx = hi

1∫
0

v̂(ξ)2 dξ = hi ‖v̂‖20,T .

And the chain rule provides

v̂′(ξ) =
dv̂

dξ
(ξ) =

dv

dx
(x)

dx

dξ
= hiv

′(x)

and thus ∥∥v′∥∥2

0,ti
= h−1

i

∥∥v̂′∥∥2

0,T
.

Therefore for hi ≤ 1 it holds

‖v‖21,ti ≤ h
−1
i ‖v̂‖

2
1,T ∀v ∈ H2(ti) . (6.6)

Strictly speaking, we showed these estimates only for functions differentiable in the
classical sense (point-wise application of the chain rule).

The validity of the above chain rule for all v ∈ H2(ti) follows by a density argument
(in detail in the next step).

• Step 3: Local interpolation error. Applying the transformation rule (6.6) to
v = u− Ihu provides

‖u− Ihu‖21,ti ≤ h
−1
i ‖ûi − Î ûi‖

2
1,T
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where

Îv(x) = v(0) + (v(1)− v(0))x v ∈ H2(T )

denotes the interpolation operator on the reference interval T . We now want to prove
the estimate

‖v − Îv‖21,T ≤ c
∥∥v′′∥∥2

0,T
∀v ∈ H2(T ) (6.7)

with c = 1
3(8 + 2

√
3). Proof method: We first show the estimates for functions in a

dense subspace of smooth functions and expand their validity by a density argument.

As we know X = {ϕ|T | ϕ ∈ C∞0 (IR)} ⊂ H2(T ) dense. Let ϕ ∈ X arbitrary but fixed.
Taylor expansion provides

ϕ(x) = ϕ(0) + ϕ′(0)x+

x∫
0

(x− z)ϕ′′(z) dz .

Inserting this for ϕ(x) and ϕ(1) we get

ϕ(x)− Îϕ(x) =

x∫
0

(x− z)ϕ′′(z) dz − x
1∫

0

(1− z)ϕ′′(z) dz .

Using the Cauchy–Schwarz inequality, we get

‖ϕ− Îϕ‖20,T =

1∫
0

 x∫
0

(x− z)ϕ′′(z) dz − x
1∫

0

(1− z)ϕ′′(z) dz

2

dx

≤
1∫

0


 x∫

0

(x− z)2 dz

 1
2
 x∫

0

ϕ′′(z)2 dz

 1
2

+ x

 1∫
0

(1− z)2 dz


1
2
 1∫

0

ϕ′′(z)2 dz


1
2


2

dx

≤ 4

1∫
0

(1− z)2 dz

1∫
0

ϕ′′(z)2 dz

=
4

3

∥∥ϕ′′∥∥2

0,T
.

By known differentiation rules

(
ϕ− Îϕ

)′
(x) = (x− x)ϕ′′(x) +

x∫
0

ϕ′′(z) dz −
1∫

0

(1− z)ϕ′′(z) dz.

From this we get similar to the above

‖
(
ϕ− Îϕ

)′‖20,T ≤ (1 + 1
3

√
3)2‖ϕ′′‖20,T .
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Altogether

‖ϕ− Îϕ‖21,T ≤ 1
3(8 + 2

√
3)‖ϕ′′‖20,T

Now the density conclusion. Therefore let v ∈ H2(T ) arbitrary but fixed. As X ⊂
H2(T ), dense, there exists a sequence (ϕk)k∈IN ⊂ X, which converges to v in H2(T ),
so

‖v − ϕk‖2,T → 0, k →∞ .

From the embedding result, theorem 5.27, we furthermore know that

‖Îv‖1,T ≤
√

5 max
x∈[0,1]

|v(x)| ≤ C ‖v‖2,T ∀v ∈ H2(T )

Together with the triangle inequality we see that

‖v − Îv‖1,T ≤ ‖ϕk − Îϕk‖1,T + ‖v − ϕk‖1,T + ‖Î(ϕk − v)‖1,T
≤
√
c
∥∥ϕ′′k∥∥0,T

+ (1 + C) ‖v − ϕk‖2,T .

holds. This, for k →∞, proofs the claim (6.7) true.

• Step 4: Back-transformation. As above we show by the chain rule that∥∥û′′i ∥∥2

0,T
= h3

i

∥∥u′′∥∥2

0,ti
.

Now we can assemble everything to get the desired estimate

‖u− Ihu‖21,Ω =

N∑
i=1

‖u− Ihu‖21,ti

≤
N∑
i=1

h−1
i ‖ûi − Î ûi‖

2
1,T

≤ c
N∑
i=1

h−1
i

∥∥û′′i ∥∥2

0,T

= c

N∑
i=1

h−1
i h3

i

∥∥u′′∥∥2

0,ti

≤ ch2
∥∥u′′∥∥2

0,Ω
.

Thereby supposing the regularity assumption u ∈ H2(Ω), we obtain the a priori error esti-
mate

‖u− uh‖1 ≤ c̃h‖u
′′‖0 ≤ c̃h‖u‖2

with c̃ =
√
cΓ/γ. This result can be extended to the case m ≥ 1 and Ω ⊂ IR2. Analogously

to the transformation to the unit interval, the affine transformation Ft from t ∈ Th onto
the unit triangle with corners (0, 0), (1, 0) and (0, 1) plays a central role in the proof. This
transformation is singular if t degenerates to an interval. The degree of degeneration of a
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triangle t ∈ Th is described by the ratio of the circumcircle rt to the incircle %t. The worst
possible ratio

σh = max
t∈Th

rt
%t

(6.8)

is called form regularity or shortly regularity of Th.

ρ
t

r
t

Figure 6.4: Incircle and circumcircle %t and rt of a triangle.

Now we can formulate our central approximation theorem.

Theorem 6.10 Let m ≥ 1, h small enough and u ∈ H1
0 (Ω) ∩Hm+1(Ω), Ω ⊂ IR2. Then the

a priori estimate

‖u− uh‖1 ≤ c σh h
m |u|m+1 , |u|m+1 =

∑
|β|=m+1

‖∂βu‖0

holds with σh from (6.8).

Proof:
The proof is analogous to the 1-D case. For the case m=1 the affine transformation is technically more
demanding. To handle the general case m > 1, we have to estimate the interpolation error on the reference
triangle more neatly (Keyword: Bramble–Hilbert-Lemma). A more elaborate description can be found in
chapter II, paragraph 6 in the book of Braess [6]. 2

If we now want to approximate the solution u ∈ H1
0 (Ω) ∩Hm(Ω) by a sequence of triangu-

lations Th, h ∈ H = {h1 > h2 > . . .}, we have to take care that σh remains bounded.

Definition 6.11 Let Th, h ∈ H = {h1 > h2 > . . .} be a family of triangulations with decreas-
ing step–size. We call the sequence (Th)h∈H regular if there exists a number σ > 0, such
that

sup
h∈H

σh ≤ σ

holds.
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Apparently (Th)h∈H is regular if and only if the interior angles of the triangulations Th remain
uniformly bounded from below. Then

‖u− uh‖1 = O(hm)

if u ∈ H1
0 (Ω) ∩Hm+1(Ω). Caution: Our proof does not give

u ∈ H1
0 (Ω) =⇒ ‖u− uh‖0 = O (h) .

6.2.2 Error Estimates in the L2-Norm

Let m = 1 from here on. From theorem 6.10 we can deduce for the L2-error of the approx-
imation, that it is of the order h. We now show with another technique that given certain
conditions

u ∈ H2(Ω) =⇒ ‖u− uh‖0 = O
(
h2
)

holds.

Theorem 6.12 Let Th, h ∈ H be a regular family of triangulations. Let the so called dual
problem

w ∈ H1
0 (Ω) : a(v, w) = (g, v) ∀v ∈ H1

0 (Ω) (6.9)

be H2-regular, i.e. ‖w‖2 ≤ c ‖g‖0. Then we have

‖u− uh‖0 ≤ ch ‖u− uh‖1 .

If the original problem is H2-regular, we even have

‖u− uh‖0 ≤ ch
2 ‖f‖0 .

Proof:
(Nitsche–Trick, Aubin(67)–Nitsche(68)-Lemma)

1) Dual Problem:

Solve the dual problem (6.9) for g = u− uh. Then follows

a(v, w) = (u− uh, v) ∀v ∈ H1
0 (Ω) .

Finite element approximation of w

wh ∈ Sh : a(v, wh) = (u− uh, v) ∀v ∈ Sh .

Error estimate (w ∈ H2(Ω) ∩H1
0 (Ω) holds by assumption)

‖w − wh‖1 ≤ ch|w|2 ≤ ch ‖g‖0 = ch ‖u− uh‖0 .

2) Orthogonality:

As is well known

a(u− uh, v) = 0 ∀v ∈ Sh .
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3) Inserting of v = u− uh:

‖u− uh‖20 = (u− uh, u− uh) = a(u− uh, w)

= a(u− uh, w − wh) (Orthogonality)

≤ Γ ‖u− uh‖1 ‖w − wh‖1
≤ Γ ‖u− uh‖1 ch ‖u− uh‖0 ,

and the first part of the claim holds. The second follows directly from

‖u− uh‖1 ≤ ch ‖f‖0
for H2-regular problems. 2

6.2.3 Adaptive Step-Size

We shortly want to discuss the construction of a sequence of regular triangulations (Th)h∈H.
Therefore we first need to construct a

starting triangulation T0

Given an easy geometry (unit square) we can do this by hand. For more complex cases
there are standard techniques like for example the advancing front methods or Delaunay
Triangulation. Details can be found in George [10, 11]. We don’t want to conceal that these
techniques give unsatisfying results (too many nodes) on special applications with multi-scale
domains (semiconductors, humans with veins, porous media with gaps, . . . ). Especially in
three space dimensions many questions are still open.

Figure 6.5: regular refinement of a triangle

We want to refine the starting triangulation. Therefore we want to divide a triangle into 4
similar triangles (see figure 6.5). Thereby the interior angles don’t change. That’s why this
is called a regular refinement.
In the case that not all triangles should be divided one has to stop somewhere. To avoid
“hanging nodes”, one can introduce irregular closures, as shown in figure. 6.6. Apparently
the interior angles are cut in half.
Continued bisection leads to degenerate triangles (figure 6.7). That’s why R.E. Bank sug-
gested already in the beginning of the 80’s to reverse the irregular refinements before each
new refinement step and avoid multiple irregular refinements of each triangle.
Altogether we thus get the following
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Figure 6.6: irregular closure

Figure 6.7: degenerate triangles by multiple irregular closures

Refinement algorithm (cf. fig. 6.8)
Given the triangulation Tk, k ≥ 0,

1) If k > 0, delete all irregular closures

2) Mark a subset of Th for refinement

3) Refine all marked triangles regularly

4) Refine all triangles with more than one refined edge or with a twice refined edge
regularly

5) Refine all triangles with refined neighbor irregular

This algorithms terminates (exercise). Of course, one wants to mark the triangles such that

the best possible approximation accuracy
with the lowest possible number of nodes

Figure 6.8: refinement without multiple irregular closures
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initial triangulation    ,    j : 

discretization wrt.

local refinement
solving the discrete problem

error

yes

no < TOL

=

j := j + 1
= Ref (   )

0

j

0

jj+1 :

Figure 6.9: adaptive finite element method

is reached. Thus, we want to refine there where it pays off.

To choose the corresponding triangles we need suitable refinement indicators. One possible
indicator is the

local error: ‖u− ũ‖1,t,

where ũ ∈ Sk typically represents an approximation of uh ∈ Sk, for example by approxima-
tion the linear system. Of course, the exact local error isn’t accessible numerically, and has
to be replaced by suitable a posteriori estimates, which can be calculated on the basis of ũ.
We refer to chapter III, paragraph 7 in the book of Braess [6]. The whole adaptive solving
process is illustrated in figure 6.9.

6.3 Condition Number of the Stiffness Matrix and Fourier Method

We again consider the model problem

u ∈ H1
0 (Ω) : a(u, v) = l(v) ∀v ∈ H1

0 (Ω) , (6.10)

and assume that l ∈ (H1
0 (Ω))′ and a(·, ·) is elliptic and symmetric, i.e.

a(v, w) =

∫
Ω

α∇v · ∇w dx .
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Discretization with linear finite elements with respect to a sequence of regular triangulations
(Th)h∈H leads to the following discrete problem

uh ∈ Sh : a(uh, v) = l(v) ∀v ∈ Sh . (6.11)

This can be written as a linear equation system

AU = b (6.12)

for the unknown coefficient-vector
U = (up)p∈Nh

with
uh =

∑
p∈Nh

upλp .

Thereby Λh = {λp, p ∈ Nh} is the nodal basis. As we know stiffness matrix A and right
hand side b are given by

A = (a(λp, λq))p,q∈Nh , b = (l(λp))p∈Nh .

From here on we use the canonical isomorphism

v =
∑
p∈Nh

vpλp → v = (vp)p∈Nh ∈ IRnh

and denote the Euclidean scalar product by

〈v, w〉 =
∑
p∈Nh

vpwp .

Then the stiffness matrix A has the property

a(w, v) = 〈Aw, v〉 ∀v ∈ Sh

and b ∈ IRnh is the corresponding representation of l

l(v) = 〈b, v〉 ∀v ∈ Sh .

If there is no danger of confusion, we forego the underline under the vectors v ∈ IRnh .

Goal: Determine with the least amount of computer operations and the least amount of
memory a ũ ∈ Sh or, equivalent, a ũ ∈ IRnh , such that

‖ũ− uh‖1 ≤ c h . (6.13)

Note:
An optimal procedure would reach (6.13) after O (nh) operations using O (nh) memory, as
this would be the effort for a diagonal matrix. /

Note:
Näıve use of the Gaussian algorithm needs O

(
n3
h

)
operations. /
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Before we tackle the development of special adapted linear solvers, we want to study some
basic properties of A. In advance we remind ourselves some basis linear algebra.

Lemma 6.13 Let A ∈ IRn,n be symmetric and positive definite (s.p.d.). Then there exists an
orthogonal basis of IRn consisting of eigenvectors ei with positive eigenvalues µi, i = 1, . . . , n.
Furthermore there exists a s.p.d. matrix A

1
2 ∈ Rn,n with the property

A
1
2A

1
2 = A .

Proof:
We only show the existence of A

1
2 . Let T = (e1 . . . en) (column-wise). Then follows

D = T−1AT, D = diag(µ1, . . . , µn), µi > 0, i = 1, . . . , n .

We set D
1
2 := (µ

1
2
1 , . . . , µ

1
2
n ). Obviously D

1
2D

1
2 = D holds. Finally we set

A
1
2 = TD

1
2 T−1

and the claim follows. 2

Lemma 6.14 Let B ∈ IRn,n be s.p.d. Then

〈v, w〉B = 〈Bv,w〉

defines a scalar product on IRn. If furthermore A ∈ IRn,n is regular and symmetric with
respect to 〈·, ·〉B, i.e.

〈Av,w〉B = 〈v,Aw〉B ,

we have

µmax(A) = max
v 6=0

〈Av, v〉B
〈v, v〉B

µmin(A) = min
v 6=0

〈Av, v〉B
〈v, v〉B

.

Proof:
The first statement is trivial.
We first consider the case B = I (unity matrix). Using the orthonormal basis representation

v =

n∑
i=1

viei

from Lemma 6.13 we get
〈Av, v〉
〈v, v〉 =

∑n
i=1 µiv

2
i 〈ei, ei〉

〈v, v〉 ≤ µmax(A) .

The same follows for v = emax. The representation of µmin(A) follows from

〈Av, v〉
〈v, v〉 =

〈w,w〉
〈A−1w,w〉 ≥

1

µmax(A−1)
= µmin(A)

with w = A
1
2 v.

Let now B be s.p.d. From the symmetry of a A w.r.t. 〈·, ·〉B follows

〈B
1
2AB−

1
2 v, w〉 = 〈AB−

1
2 v,B−

1
2w〉B = 〈B−

1
2 v,AB−

1
2w〉B = 〈v,B

1
2AB−

1
2w〉 ,

thus the symmetry of B
1
2AB−

1
2 w.r.t. the Euclidean scalar product. This matrix has the same Eigenvalues

as A and
〈Av, v〉B
〈v, v〉B

=
〈B

1
2AB−

1
2w,w〉

〈w,w〉
with w = B

1
2 v. Now follow the claims from the corresponding statements in the case B = I. 2
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Note:
The quotient

〈Av, v〉B
〈v, v〉B

is called Rayleigh Quotient. /

From now on A denotes the stiffness matrix again (w.r.t. the nodal basis).

Theorem 6.15 The stiffness matrix A is symmetric and positive definite. The number of
from non-zero elements in each row of A is uniformly bounded by h (A is sparse).

Proof:
Exercise. 2

Conclusion 6.16 The evaluation of Av needs O(nh) dot-operations.

Theorem 6.17 The condition number κ(A) satisfies the estimates

1

o(1)
≤ κ(A) =

µmax(A)

µmin(A)
≤ ch−2 . (6.14)

Proof:
1) It holds

µmax(A) = max
v∈IRnh

〈Av, v〉
|v|2

= max
v∈Sh

a(v, v)

|v|2
≤ Γ
‖v‖21
|v|2

≤ c ,

because of
‖v‖21,t ≤ c ‖v̂‖

2
1,T ≤ C(v2(p1) + v2(p2) + v2(p3)) ,

where t = (p1, p2, p3). Summing up gives (due to the regularity of Th!) the above estimate.

2) It holds

µmin(A) = min
v∈IRnh

〈Av, v〉
|v|2

= min
v∈Sh

a(v, v)

|v|2
≥ γ
‖v‖21
|v|2

.

For each t = (p1, p2, p3) ∈ T we have

v2(p1) + v2(p2) + v2(p3) ≤ c ‖v̂‖2L2(T ) ≤ c h
−2 ‖v‖2L2(t) ≤ C h

−2 ‖v‖21,t ,

and summing up gives

|v|2 ≤ c h−2 ‖v‖21 ,

so

µmin(A) ≥ ch2 .

3) As contradiction to the proposition we assume there exists a ε > 0 such that

a(v, v) ≥ ε |v|2 ∀v ∈ Sh , ∀h ∈ H

holds. Then we choose ϕ ∈ C∞0 (Ω) ∩H1
0 (Ω) such that for a circle K ⊂ Ω with positive radius

ϕ(x) ≡ 1 ∀x ∈ K

holds and set v := Ihϕ ∈ Sh (interpolation). Then

|v|2 ≥ |Nh ∩K| → ∞ für h→∞ ,

but

a(v, v) ≤ Γ ‖Ihϕ‖21 ≤ 2Γ (‖Ihϕ− ϕ‖21 + ‖ϕ‖21) ≤ const. ∀h ∈ H .

which is a contradiction. 2
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Note:
The above estimate (6.14) is sharp. Below we will provide an example for which κ(A) =
O(h−2) holds. /

Note:
Theorem 6.17 implies particularly that when solving our equation system with h → 0 the
rounding errors can become arbitrary big. This poses serious difficulties to directly solving
(6.12). /

It is of vital importance that the condition number of the stiffness matrix depends on the
choice of the basis of Sh.

Theorem 6.18 Let Λ̂h = {λ̂p | p ∈ Nh} be a basis of Sh and

v =
∑
p∈Nh

v̂pλ̂p → v̂ = (v̂p)p∈Nh

the corresponding isomorphism, Â the stiffness matrix corresponding to Λ̂h, i.e.

a(v, w) = 〈Âv̂, ŵ〉 ∀v ∈ Sh .

Let T T be transformation matrix from Λh to Λ̂h, i.e.

λ̂p =
∑
q∈Nh

Tqpλq .

Then we have

Â = T TAT .

Proof:
Inserting gives

v =
∑
p∈Nh

v̂pλ̂p =
∑
p∈Nh

v̂p
∑
q∈Nh

Tqpλq

=
∑
q∈Nh

∑
p∈Nh

Tqpv̂p

λq ,

so
v = T v̂ .

By the representation of Â follows

〈Âv̂, ŵ〉 = a(v, w) = 〈Av,w〉 = 〈TTAT v̂, ŵ〉

and thereby the claim. 2

As A is symmetric and positive definite, there exists an orthonormal basis of eigenvectors
ep, to the eigenvalues µp, p ∈ Nh of A. Due to

a(ep, eq) = 〈Aep, eq〉 = µp〈ep, eq〉

the corresponding functions ep ∈ Sh, p ∈ Nh are orthogonal respective to the energy scalar
product a(·, ·), or short, a-orthogonal.
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Corollary 6.19 Choosing the a-orthonormal basis of Sh

λ̂p =
1
√
µp
ep

for the representation of uh ∈ Sh, one gets

Â = I .

Proof:
It holds

ap,q = a(λ̂p, λ̂q) = 〈 1
√
µp
Aep,

1
√
µq
eq〉 = δp,q .

In special cases the eigenvalues µp and eigenvectors ep can be calculated explicitly. Therefore
we consider

a(v, w) =

∫
Ω

∇v · ∇w dx

with Ω = (0, 1) × (0, 1) and Th as in figure 6.10. Step-size h = 1
m , number of unknowns

nh = (m− 1)2.

Figure 6.10: unit square Ω with tensor grid Th

We enumerate the nodal points
pij = (ih, jh)

row-wise. Therefore the unknown vector U becomes

U = (up)p∈Nh = (upij )i,j=1...m−1 =

 U1
...

Um−1


with vectors Uj = (upij )i=1,...,m−1.
The stiffness matrix A has a block-tridiagonal shape

A =


Am −Im
−Im Am −Im

. . .

−Im Am −Im
−Im Am

 (6.15)
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with the (m− 1)× (m− 1)-matrices

Am =


4 −1
−1 4 −1

. . .

−1 4 −1
−1 4

 Im =


1 0
0 1 0

. . .

0 1 0
0 1


Theorem 6.20 The eigenvectors eij and the corresponding eigenvalues µij of A are given by

(eij)lk = sin(iπlh) · sin(jπkh)

µij = 4
(

sin2(i
π

2
h) + sin2(j

π

2
h)
)

.

Proof:
Let ω2 = −1. Using the de Moivre’s formula we get

sinϕ =
1

2ω

(
eωϕ − e−ωϕ

)
cosϕ =

1

2

(
eωϕ + e−ωϕ

)
Furthermore

1− cosϕ = 2 sin2 ϕ

2
.

Because of

−eωiπ(l−1)h + 2eωiπlh − eωiπ(l+1)h = eωiπlh
(
−e−ωiπh + 2− eωiπh

)
= 2eωiπlh (1− cos(iπh))

= 4eωiπlh sin2(i
π

2
h)

it holds that
− sin(iπ(l − 1)h) + 2 sin(iπlh)− sin(iπ(l + 1)h) = 4 sin2(i

π

2
h) sin(iπlh) .

Particularly are

ei = (sin(iπlh))l=1,...,m−1 ∈ IRm−1, µi = 4 sin2(i
π

2
h)

eigenvectors and eigenvalues of the (m− 1)× (m− 1)-matrix B

B =


2 −1
−1 2 −1

. . .

−1 2 −1
−1 2

 .

We write eij as a block vector

eij =

 E1

...
Em−1

 , Ek = sin(jπkh) · ei .

Block-wise evaluation of Aeij then gives for the k-th block

(Aeij)k = −Ek−1 +AmEk − Ek+1

= −Ek−1 + 2Ek +BEk − Ek+1

= (− sin(jπ(k − 1)h) + 2 sin(jπkh)− sin(jπ(k + 1)h)) ei + sin(jπkh)Bei

= 4 sin2(j
π

2
h) sin(jπkh)ei + 4 sin2(i

π

2
h) sin(jπkh)ei

= 4
(

sin2(i
π

2
h) + sin2(j

π

2
h)
)
Ek .
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What is exactly the claim. 2

Note:
The condition number of the stiffness matrix A from (6.15) is

κ(A) =
µmax

µmin
=
µm−1,m−1

µ1,1
= O(h−2) .

Note:
Theorem 6.20 gets intuitively accessible by the fact that the eigenfunctions of the Laplace
operator

−∆ϕij =
(
(iπ)2 + (jπ)2

)
ϕij

on Ω = (0, 1)× (0, 1) with zero-boundary conditions are given by

ϕij(x, y) = sin(iπx) · sin(jπy) i, j ∈ IN

These eigenvectors of A are in this case exactly the point-wise restrictions of the correspond-
ing eigenfunctions.

Furthermore, it holds:

1

h2
µij → (iπ)2 + (jπ)2 für h→ 0 .

Proof as an exercise. /

Note:
Note that the eigenfunctions differ strongly in their frequency. There are low-frequency eigen-
vectors (i, j � m

2 ) and high-frequency eigenvectors (i, j � m
2 ) and everything in between. /

Using theorem 6.20 we can state the exact solution uj directly.

Theorem 6.21 Let b = (bij)i,j=1,...,m−1 be the right-hand side of our equation system. Then
we have

upij =
m−1∑
l,k=1

(elk)ij
|elk|

µ−1
lk b̂lk , b̂lk :=

m−1∑
r,s=1

(elk)rs
|elk|

brs .

Proof:
By composing the transformation matrix T from the column-wise entries of the normed eigenvectors (elk)

|elk|
, it

follows (
TTAT

)
TTU = TT b .

Therefore by TTAT = D := diag(µij)

U = TD−1TT b .

This is the matrix representation of the above equation. 2
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Note:
For the evaluation of the solution according to Theorem 6.21 using a näıve implementation
of the summation ,one needs O

(
n2
h

)
operations. That is because the matrix TD−1T T is

fully populated. But the sums from theorem 6.21 can be calculated with only O (log nh)
operations using the the fast Fourier transform (FFT). Note for example the difference
between nh = 106 and log nh = 6. For the details we refer to [17]. Thereby we get a total
effort of

Number of point operations = O (n log n)

to solve the equation system. The just described solution method is called Fourier method./

Note:
Under the assumption, that the secondary diagonal blocks are exchangeable with the main
diagonal blocks, the Fourier method can be extended to other block-tri-diagonal equation
systems. Unfortunately this isn’t the case for non-constant coefficients α(x). /

So in general we don’t know the eigenvectors ep of A. Regarding our model problem we
saw that the a-orthogonal finite element functions ep ∈ Sh represent a scale of
frequencies. This is, as one can proof mathematically and understand physically, always
the case. Thus, being interested in a-orthogonal or at least “almost” a-orthogonal functions,
one should try those functions which cover a preferably big scale of frequencies.
This is the main idea of multi-grid methods.

6.4 Multi-Grid Methods

We still consider the model problem (6.10) with the symmetric bilinear form

a(v, w) =

∫
Ω

α∇v · ∇w dx .

Grid hierarchy. We assume about the discretization

uh ∈ Sh : a(uh, v) = l(v) ∀v ∈ Sh (6.16)

that the triangulation Th = Thj was formed by j refining steps from a starting triangulation
Th0 . For simplicity we assume a regular refinement. Therefore

hj = O(2−j), hk−1 = 2hk k = 1, . . . , j . (6.17)

We write shortly
Tk = Thk , k = 0, . . . , j .

Corresponding to the nested sequence of triangulations

T0 ⊂ T1 ⊂ · · · ⊂ Tj

with node set
N0 ⊂ N1 ⊂ · · · ⊂ Nj
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is the nested sequence of finite element spaces

S0 ⊂ S1 ⊂ · · · ⊂ Sj = Shj

with node bases

Λk = {λ(k)
p | p ∈ Nk}

on each refinement level k = 0, . . . , j. Due to the uniform refinement the number of nodes
nk = #Nk grows geometrically, i.e. there exists a q > 1 with

nk ≥ qnk−1 k = 1, . . . , j. (6.18)

As is well known, the discrete problem (6.16) is equivalent to the minimization problem

uj ∈ Sj : J(uj) ≤ J(v) ∀v ∈ Sj (6.19)

with

J(v) = 1
2a(v, v)− l(v) v ∈ Sj .

and uj = uhj .

Subspace correction methods. We now want to construct iterative solution methods to
(6.19). Therefore we replace the “large” minimization problem (6.19) by a sequence of
“smaller” minimization problems. For this purpose we choose a partition

Sj = V0 + V1 + · · ·+ Vm (6.20)

of subspaces

Vk ⊂ Sj , k = 0, . . . ,m .

Successive minimization of the energy J leads to the following iterative method to calculate
the new iterate uν+1

j ∈ Sj from a given iterate uνj ∈ Sj .

Algorithm 6.1 (Successive Minimization)
given: w−1 = uνj ∈ Sj .

for k = 0, . . . ,m solve:

vk ∈ Vk : J(wk−1 + vk) ≤ J(wk−1 + v) ∀v ∈ Vk, wk = wk−1 + vk, (6.21)

new iterate: uν+1
j = wm.

Thus each partition (6.20) directly gives a corresponding iterative method. We will now
try to choose the partition (6.20) such that the corresponding iterative method converges as
quickly as possible and can be implemented with effort O(nj).
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Gauss–Seidel method. Obviously one can solve (6.21) without difficulties exactly, when
choosing one dimensional subspaces

Vl = spann{λl}, l = 1, . . . ,m,

A natural partition then is

Sj =

nj∑
l=1

Vl, Vl = spann{λ(j)
pl
}, l = 1, . . . , nj . (6.22)

The resulting iterative method is

uν+1
j = uνj +

nj∑
l=1

vl, vl =
l(λ

(j)
pl )− a(wl−1, λ

(j)
pl )

a(λ
(j)
pl , λ

(j)
pl )

λ(j)
pl
, (6.23)

where w0 = uνj and wl = wl−1 + vl, l = 1, . . . , nj − 1.

Theorem 6.22 The iterative method (6.23) is the Gauss–Seidel method. The correction

v(j) = v1 + · · ·+ vnj = uν+1
j − uνj

is the solution of the variational problem

v(j) ∈ Sj : bj(v
(j), v) = l(v)− a(uνj , v) ∀v ∈ Sj (6.24)

where

bj(v, w) =

nj∑
i,l=1
i≤l

v(pi)a
(
λ(j)
pi , λ

(j)
pl

)
w(pl) , v, w ∈ Sj , (6.25)

Proof:
Let l = 1, . . . , nj be chosen arbitrarily. From wl−1 = uνj +

∑l−1
i=1 vi in (6.23) follows directly

l
(
λ

(j)
pl

)
− a
(
uνj , λ

(j)
pl

)
= vl(pl)a

(
λ

(j)
pl , λ

(j)
pl

)
+

l−1∑
i=1

a
(
vi, λ

(j)
pl

)
=

l∑
i=1

v(j)(pi)a
(
λ(j)
pi , λ

(j)
pl

)
= bj

(
v(j), λ

(j)
pl

)
.

As l was arbitrary, the claim follows.
The matrix representation of (6.24) is

Bvν = b−Auν . (6.26)

Thereby

A = (api,pl)
nj
i,l=1, api,pl = a

(
λ(j)
pi , λ

(j)
pl

)
, b =

(
l(λ(j)

pi )
)nj
i=1

and the matrix

B = L+D

results from the partition of A = L + D + R in a sub-diagonal part L, a diagonal D and a super diagonal
part R. Hence (6.26) is the known Gauss–Seidel method (cf i.e. Braess [6, chapter 4, paragraph 1]). 2
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The convergence rate of the Gauss–Seidel method degenerates exponentially with j:

Theorem 6.23 It holds for all u0
j ∈ Sj

‖uj − uν+1
j ‖ ≤ (1− ch2)‖uj − uνj ‖ ∀ν ≥ 0 .

with the energy norm ‖ · ‖ = a(·, ·)1/2 and a j-independent constant c > 0.

Proof:
Most textbooks usually only treat the application to the discrete model problem (6.15). A general proof can
be found in Kornhuber [15][theorem 7.32]. 2

Multilevel Gauss–Seidel. According to Theorem 6.23 the Gauss–Seidel method is glob-
ally convergent, but the rate of convergence decreases quickly with increasing amount of
unknowns.
Why is that? The answer follows from the following remark.

Theorem 6.24 Let (6.20) be an a-orthogonal partition, i.e.

a(v, w) = 0, ∀v ∈ Vi, w ∈ Vk, i 6= k ,

then the corresponding algorithm 6.1 gives for each starting value u0
j the exact solution uj

after one step.

Proof:
Exercise. 2

Knowing the eigenvectors ep of the stiffness matrix A,

Vl = spann{epl} l = 1, . . . , n

would be an optimal, because a-orthogonal choice of the subspaces. We remember: epl covers
a big scale of frequencies. Conversely the functions λl, which cover a big scale of frequencies,
could lead to a fast convergent method. Anyhow, the nodal basis elements of Sj don’t have

this property: all λ
(j)
p have a “high frequency” (Support with diameter O(hj)).

Contrary one can classify the nodal basis elements of coarser grids as having a “low fre-
quency” (see figure 6.11).
We therefore define the so called Multi-level nodal basis Λ,

Λ =

j⋃
k=0

Λk = {λl | l = 1, . . . ,mS} , mS = n0 + · · ·+ nj ,

as a union of all nodal basis functions of all refinement levels. The enumeration λl = λ
(kl)
pl

goes from fine to coarse, i.e. from l > l′ follows kl ≤ kl′ . Thus, given our purely heuristic
point of view, the corresponding partition

Sj =

mS∑
l=1

Vl, Vl = spann{λl}, l = 1, . . . ,mS , (6.27)
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Figure 6.11: multi-level nodal basis as a scale of frequencies

covers a scale of frequencies, beginning with low frequency functions λl ∈ Λ0 and reaching
to high frequency functions λl ∈ Λj . The extended partition (6.27) therefore according to
algorithm 6.1 gives the so called multi-level Gauss–Seidel algorithm

uν+1
j = uνj +

mS∑
l=1

vl, vl =
l(λl)− a(wl−1, λl)

a(λl, λl)
λl , (6.28)

where w0 = uνj and wl = wl−1 + vl, l = 1, . . . ,mS − 1.

Multi-grid V -cycle. The algorithm (6.28) can be rewritten equivalently, condensing all
corrections on level k to one correction v(k). Thereby one gets the following multi-grid
method.

Algorithm 6.2 (Multi-grid V -cycle)
given: uνj
initialize: rj = `− a(uνj , ·), aj(·, ·) = a(·, ·)

for k = j, . . . , 1 do:
{

solve:
v(k) ∈ Sk : bk(v

(k), v) = rk(v) ∀v ∈ Sk (pre-smoothing)

rk = rk − ak(v(k), ·) (update the residual)

rk−1 = rk|Sk−1

ak−1(·, ·) = ak(·, ·)|Sk−1×Sk−1

(canonical restriction)

}

solve:
v(0) ∈ S0 : b0(v(0), v) = r0(v) ∀v ∈ S0 (approximate coarse-grid solution)

for k = 1, . . . , j do:
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{
v(k) = v(k) + v(k−1) (canonical interpolation)

}

new iterate: uν+1
j = uνj + v(j)

The bilinear forms

bk(v, w) =

nk∑
i,l=1
i≤l

v(pi)a
(
λ(k)
pi , λ

(k)
pl

)
w(pl) , v, w ∈ Sk . (6.29)

correspond to a Gauß–Seidel step on level k. The nodes pl ∈ Nk need to be traversed in

the same order as the subspaces Vl = spann{λ(kl)
pl } on level kl = k in the formulation (6.1).

As these Gauss–Seidel steps reduce the high frequent parts on Sk quickly, one speaks of a
smoother.
The canonical restrictions of the residual rk ∈ S′k and the bilinear form ak(·, ·) on Sj are
defined by

rk−1(v) = rk(v), ak−1(v, w) = ak(v, w), v, w ∈ Sk−1 ⊂ Sk .

The term V -cycle is motivated by the procedure of first calculating descending corrections
v(k) from the fine to the coarse grid, and then collecting them ascending from the coarse to
the fine grid. On this way, according to (6.18), each iterative step needs at most O(nj) point
operations.

Sj

S3

S2

S1

level j=4

level 3

level 2

level 1

Figure 6.12: de- and ascend through the grids in the V-cycle for j = 3.

Implementation. Before implementing the method, one usually has to express the finite
element functions v ∈ Sk by vectors v ∈ IRnk and the bilinear forms ak(·, ·), bk(·, ·) by
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matrices Ak, Bk ∈ IRnk,nk . Residues r ∈ S′k are represented by their values in the nodal
basis, so

r =
(
r(λ(k)

pi )
)nk
i=1
∈ IRnk .

The canonical interpolation from Sk−1 to Sk becomes a matrix Ik ∈ IRnk,nk−1 and the
restriction of the residuals from Sk to Sk−1 can be represented by Rk = ITk ∈ IRnk−1,nk .
However in the practical implementation one doesn’t calculate these matrices explicitly. For
the interpolation one uses the relation

v(k−1)(p) =
∑

q∈Nk−1

v(k−1)(q)λ(k−1)
q (p) ∀p ∈ Nk

and for the restriction the relation

rk(λ
(k−1)
p ) =

∑
q∈Nk

λ(k−1)
p (q)rk(λ

(k)
q ) ∀p ∈ Nk−1 .

directly. This way one gets, similar to the difference methods, local interpolation- and
restriction-spaces (exercise).

Convergence. Our heuristic motivation is justified by the following convergence result.

Theorem 6.25 There exists a % < 1, depending only on the regularity of T0 and the ellipticity
constants γ, Γ of a(·, ·), such that for all u0

j ∈ Sj the error estimate

‖uj − uν+1
j ‖ ≤ %‖uj − uνj ‖ ∀ν ≥ 0 (6.30)

holds.

The proof would exceed the scope of this lecture. We refer to the renowned outline articles of
Xu [22] and Yserentant [23] or (as a reading aid) to the script of Kornhuber [15]. A very ele-
gant presentation of the classical multi-grid convergence theory is given by Braess [6][chapter
V]. The above result (asymmetric Gauß–Seidel methods as smoother) follows by results of
Neuss [16].

Nested iterations. In the practical application of multi-grid methods we are interested in
approximating the exact finite element approximation uj in the energy norm up to a error of
the order O(hj). The therefore necessary amount of iteration steps of course depends greatly
on the starting iterate. Thus it is standing to reason, to calculate a good starting iterate for
the iteration on Tk+1 by a specific amount ν∗ of multi-grid steps on Tk. This procedure is
called nested iteration (see Hackbusch [12]).
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Algorithm 6.3 (Multi-grid with nested iteration)
given: ũ0 ∈ S0

for k = 1, . . . , j do:
{
starting iterate: u0

k = ũk−1

ν∗ multi-grid steps: ũk = uν
∗
k

}

result: ũj

Now the question arises how to choose ν∗. The answer is given by the following theorem.

Theorem 6.26 We assume that the finite element approximations uk satisfy the estimates

‖u− uk‖ ≤ c1hk , k = 0, 1, . . . , (6.31)

with a k-independent constant c1, furthermore

ũ0 = u0 (6.32)

and finally ν∗ is chosen such that the stopping criterion

‖uk − ũk‖ ≤ σ
2 ‖uk − u

0
k‖ , k = 1, 2, . . . , (6.33)

is satisfied with a k-independent σ < 1. Then there exists a j-independent C, such that

‖u− ũj‖ ≤ Chj . (6.34)

Proof:
Using the preconditions (6.33), (6.31), (6.32) and (6.17) one calculates

‖u− ũj‖ ≤ ‖u− uj‖+ ‖uj − ũj‖ ≤ ‖u− uj‖+ 1
2
σ‖uj − ũj−1‖

≤ (1 + 1
2
σ)‖u− uj‖+ 1

2
σ‖u− ũj−1‖

≤ (σ
2

)j‖u− u0‖+ (1 + 1
2
σ)

j−1∑
i=0

(σ
2

)i‖u− uj−i‖

≤ (1 + 1
2
σ)c1

j∑
i=0

σihj

≤ 3
2
c1(1− σ)−1hj .

(6.34) follows with C = 3
2
c1(1− σ)−1. 2

Of course in general c1 and thereby also C depend on u. As is generally known the regularity
assumption u ∈ H ∩ H2(Ω) is sufficient for the discretization accuracy (6.31). The exact
solution u0 on the (hopefully) coarse grid T0 is calculated with a directly. To check the
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stopping criterion (6.33), we need an a posteriori estimate on the algebraic error ‖uk − uνk‖.
By the triangle inequality follows with % from theorem 6.25 (Exercise)

(1 + %)−1‖uν+1
k − uνk‖ ≤ ‖uk − uνk‖ ≤ (1− %)−1‖uν+1

k − uνk‖ . (6.35)

The multi-grid corrections therefore give lower and upper bounds for the algebraic error at
the same time.

Corollary 6.27 For the calculation of an approximation ũj with accuracy

‖u− ũj‖ = O(hj)

the multi-grid with nested iteration method needs (see theorem 6.26)

O(nj) point operations.

Proof:
The number of point operations on a fixed level k is bounded by cnk, with c independent of k. As the
convergence rate % is independent of j, the number ν∗ of multi-grid steps needed to satisfy the stopping
criterion (6.33) is also independent of j. Particularly one can calculate for each given σ < 1 the necessary
number of multi-grid steps ν∗ by %ν

∗
< 1

2
σ. In view of (6.18) the total effort of the multi-grid with nested

iteration method is thus bounded by

cν∗
j∑

k=1

nk ≤ cν∗(1− q−1)−1nj = O(nj) .

Note:
Our main goal is the approximation of the unknown function u up to a given tolerance TOL.
Therefore the amount j of refinement steps should not be fixed a priori, but be determined a
posteriori by an adaptive multilevel method. Therefore one needs corresponding a posteriori
estimates for the discretization error. /

Note:
In practice, multi-grid methods are used mostly as preconditioner for the conjugate gradient
method (cg-method). This way one gets an additional increase in the convergence rate.
For details on the cg-methods and preconditioning we refer to Deuflhard and Hohmann [8,
chapter 8] or Braess [6, chapter IV]. /



7 Parabolic Differential Equations

7.1 Classical Solutions

Details to the following two sections can be found in F. John, Partial Differential Equations,
Springer, chapter 7.

7.1.1 The Cauchy-Problem for the Heat Equation

We consider the heat equation

ut = αuxx x ∈ IR, t ∈ (0, 1]

u(x, 0) = u0(x) x ∈ IR ,
(7.1)

where we begin by setting α ≡ 1. We look for a classical solution u, i.e.

u ∈ C(Q) , uxx, ut ∈ C(Q) with Q = IR× (0, T ] .

By “qualified guessing” we want to develop a closed solution for (7.1). Therefore we define
for v ∈ C∞0 (IR) the Fourier transform

v̂(ξ) = (2π)−
1
2

∫
IR

e−ixξ v(x) dx with i2 = −1 . (7.2)

In a slightly bigger space then C∞0 (IR) (the space of “rapidly decreasing” C∞-functions) the
Fourier transform v 7→ v̂ happens to be bijective, and the inverse relation holds

v(x) = (2π)−
1
2

∫
IR

eixξ v̂(ξ) dξ . (7.3)

A fundamental property of the Fourier transform is converting derivatives into multiplica-
tions. Using the product rule (with |v(x)| → 0 for |x| → ∞) we have

iξv̂(ξ) = −(2π)−
1
2

∫
IR

∂

∂x
(e−ixξ) v(x) dx

= (2π)−
1
2

∫
IR

e−ixξ
dv

dx
(x) dx ,

so

iξv̂ =
d̂v

dx
.

101
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Using this property, our problem (7.1) can be simplified and solved by further steps. There-
fore we apply the Fourier transform to the space part of u in the heat equation and get for
each t > 0

ût = ût = ûxx = (iξ)2û = −ξ2û .

The initial condition becomes
û(ξ, 0) = û0 .

The solution of this ordinary differential equation in the Fourier space is given by

û(ξ, t) = û0(ξ)e−ξ
2t . (7.4)

Now we have to transform back. This could be done with the above mentioned inverse of the
Fourier transform. But it is more effective using the following formula, which again applies
for “rapidly decreasing” C∞-functions v and w:

(2π)−
1
2 v̂ ∗ w = v̂ŵ . (7.5)

Here v ∗ w is the convolution of v and w, defined by

(v ∗ w)(x) =

∫
IR

v(y)w(x− y) dy ∀x ∈ IR .

The Fourier transform thus transforms convolutions to products of functions. To apply (7.5)
to (7.4) we have to identify the function w : ξ 7→ e−ξ

2t as a Fourier transform. Indeed this
function is, up to a variable transformation, its own Fourier transform. Namely x 7→ e−x

2/2

is an eigenfunction of the Fourier transform and thus w is the Fourier transform of

x 7→ (2t)−
1
2 e−x

2/4t

(proof as exercise). Thus, together with (7.5), as solution to our Cauchy problem we get

u(x, t) = (4πt)−
1
2

∫
IR

e−
(x−ξ)2

4t u0(ξ) dξ . (7.6)

We now see that our transformations give us a closed solution u of the Cauchy problem (7.1)
(at least for the here not further defined “rapidly decreasing” C∞-initial data u0). We will
now show that (7.6) is a solution for every continuous and bounded u0, which furthermore
depends continuously on u0. Therefore we define, analogously to the elliptic case, the Greens
function G by

G(x, ξ, t) = (4πt)−
1
2 e−

(x−ξ)2
4t , t > 0 , x, ξ ∈ IR .

Theorem 7.1 For each initial condition u0 ∈ C(IR) with ‖u0‖∞ = supx∈IR |u0(x)| <∞ ,

u(x, t) =

∫
IR

G(x, ξ, t)u0(ξ) dξ , x ∈ IR , t > 0
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defines a classical solution for the Cauchy problem (7.1). Furthermore holds for every T > 0

max
t∈[0,T ]

‖u(·, t)‖∞ ≤ ‖u0‖∞ . (7.7)

Proof:
It holds that

∂

∂t
G(x, ξ, t) =

1

t
√

4πt
e−

(x−ξ)2
4t

[
−1

2
+

(x− ξ)2

4t

]
,

∂

∂x
G(x, ξ, t) = − (x− ξ)

2t
√

4πt
e−

(x−ξ)2
4t ,

∂2

∂x2
G(x, ξ, t) =

1

t
√

4πt
e−

(x−ξ)2
4t

[
(x− ξ)2

4t
− 1

2

]
,

so that

ut(x, t) =

∫
IR

∂

∂t
G(x, ξ, t)u0(ξ) dξ =

∫
IR

∂2

∂x2
G(x, ξ, t)u0(ξ) dξ = uxx(x, t) .

Thereby one can exchange integration and differentiation, as for t > 0 the partial derivatives of G in direction
x or t are equicontinuous with respect to ξ and converge uniformly and strong enough in a neighbourhood of
x/t for ξ → ∞ to 0. Concrete: Let ε > 0. We consider ∂

∂t
f(t, ξ) for f(t, ξ) = G(x, ξ, t)u0(ξ), x ∈ IR, and a

t > 0. Applying the mean value theorem we get∣∣∣∣f(t+ h, ξ)− f(t, ξ)

h
− ∂

∂t
f(t, ξ)

∣∣∣∣ ≤ ε
if h ≤ δ for a δ > 0, chosen independently of ξ. Hereby follows

∂

∂t

∫
In

f(t, ξ)dξ =

∫
In

∂

∂t
f(t, ξ)dξ

for each interval In = [−n, n], n ∈ IN (Why?). Furthermore for a specific neighbourhood Ut of t and a N ∈ IN∣∣∣∣∣∣∣
∫

IR\In

∂

∂t′
f(t′, ξ)dξ

∣∣∣∣∣∣∣ ≤ ε
holds for n ≥ N uniformly in t′ ∈ Ut. As f is also improperly integrable, one can deduce the exchangeability
of the derivative and integral over the whole unbounded set of integration IR. (How?)

Now we examine the limit of u(·, t) for t→ 0. Evidently we have

x 6= ξ =⇒ lim
t→0

G(x, ξ, t) = 0

uniformly for |x− ξ| ≥ δ > 0 and

G(x, ξ, t) > 0 ∀x, ξ ∈ IR , t > 0 .

Together this gives for every δ > 0∣∣∣∣∣∣∣
∫

|x−ξ|≥δ

G(x, ξ, t)u0(ξ) dξ

∣∣∣∣∣∣∣ ≤ ‖u0‖∞
∫

|x−ξ|≥δ

G(x, ξ, t) dξ → 0 , t→ 0 .

Furthermore because of ∫
IR

G(x, ξ, t) dξ = 1 x ∈ IR , t > 0 (7.8)
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(Recalculate!) the following estimate is correct:∣∣∣∣∣∣∣u0(x)−
∫

|x−ξ|≤δ

G(x, ξ, t)u0(ξ) dξ

∣∣∣∣∣∣∣ ≤ |u0(x)|
∫

|x−ξ|≥δ

G(x, ξ, t) dξ +

∫
|x−ξ|≤δ

G(x, ξ, t) |u0(x)− u0(ξ)| dξ

≤ ‖u0‖∞
∫

|x−ξ|≥δ

G(x, ξ, t) dξ + max
|x−ξ|≤δ

|u0(x)− u0(ξ)| → 0

for t, δ → 0 .

As u0 is uniformly continuous on compact subsets of IR, the above estimates imply the uniform convergence
of u(·, t) → u0 for t → 0 on compact subsets of IR and thereby u ∈ C(Q). (Why doesn’t the point-wise
convergence suffice?)

The a-priori-estimate (7.7) follows directly from the mean value property (7.8). 2

Note:
1) The property

G(x, ξ, t) > 0 ∀x, ξ ∈ IR , t > 0

means that a perturbation of u0 in an arbitrary point x0 leads to perturbations in the
solution u(x, t) in every x ∈ IR for every time t > 0. Thereby the domain of dependence
of each (x, t) ∈ Q is all IR.

In other words:

Perturbations in the initial conditions spread with infinite speed.

2) Independently of the choice of initial conditions u0 ∈ C(IR), we have u(·, t) ∈ C∞(IR)
for each t > 0. (Why?) This smoothing property is typical for parabolic equations.

3) u even suffices the maximum principle

inf
y∈IR

u0(y) ≤ u(x, t) ≤ sup
y∈IR

u0(y) ∀x ∈ IR , t > 0 .

4) The solution of the Cauchy problem is not unique. In particular there exist “unphys-
ical” solutions with |u(x, t)| → ∞ for t → 0. A construction of such solutions can be
found in [13, S. 211].

Sufficient conditions for uniqueness are for example

|u(x, t)| ≤M eαx , x ∈ IR, 0 < t < T (John [13, S. 217]) ,

u(x, t) ≥ 0 , x ∈ IR, 0 < t < T (John [13, S. 222]) .

7.1.2 Initial–Boundary–Value Problems

We consider on a bounded domain Ω ⊂ IRn the initial–boundary–value problem for the heat
equation

ut −∆u = f in Q = Ω× (0, T ]

u(x, 0) = u0(x) x ∈ Ω
u(x, t) = g(x, t) (x, t) ∈ ∂Ω× (0, T ] .

(7.9)
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To ensure u ∈ C(Ω), the data f , u0 and g must be required as continuous and to satisfy the
consistency condition

u0(x) = g(x, 0) ∀x ∈ ∂Ω .

An important tool to the proof of uniqueness and a priori estimates is the following maximum
principle.

Theorem 7.2 Let u ∈ C(Q), ut,
∂2u
∂x2
i
∈ C(Q), i = 1, . . . , n, and

ut −∆u ≤ 0 in Q .

Then follows
max

(x,t)∈Q
u(x, t) ≤ max

(x,t)∈∂Q\ΓT
u(x, t) ,

where ΓT := {(x, t) |x ∈ Ω and t = T}.

Proof:
Choose ε > 0 and consider the function

v(x, t) = u(x, t)− ε t .

Assume that v achieves its maximum in (x0, t0). We will show (x0, t0) 6∈ Q ∪ ΓT .
If this was the case, by the necessary conditions for a maximum we would have

vt(x0, t0) ≥ 0 , ∆v(x0, t0) ≤ 0 .

This is a contradiction to

vt(x0, t0) = ut(x0, t0)− ε ≤ ∆u(x0, t0)− ε = ∆v(x0, t0)− ε ≤ −ε < 0 .

If now u wouldn’t achieve its maximum in ΓD := ∂Q\ΓT , there would be a (x0, t0) ∈ Q ∪ ΓT with

u(x0, t0) > u(x, t) ∀(x, t) ∈ ΓD ,

and thereby an ε > 0 with
u(x0, t0)− ε t0 > u(x, t)− ε t ∀ (x, t) ∈ ΓD

contradictory to the above shown. 2

Theorem 7.3 The initial value problem (7.9) has at most one classical solution u ∈ C(Q)∩
C2(Q).

Proof:
Assume u1, u2 were two different classical solutions of (7.9), then w = u1 − u2 would be the solution of the
homogeneous problem (with u0 = 0 and g = 0) and

wt −∆w ≤ 0 .

Thus we have
max

(x,t)∈Q
w(x, t) ≤ max

(x,t)∈ΓD
w(x, t) = 0 .

Analogously follows from (−w)t − (−w)xx ≤ 0 directly −w ≤ 0. This shows u1 = u2. 2

Theorem 7.4 A classical solution of (7.9), if existent, depends continuously on the data u0

and g with respect to the ‖ · ‖∞-norm. It even holds that

sup
0<t≤T

‖u(·, t)‖∞ = max{‖u0‖∞ , sup
0<t≤T

‖g(·, t)‖∞} .
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TΓ

T

a b

x

t

Q

Figure 7.1: domain of calculation Q

Proof:
Exercise. 2

We want to proof the existence of a solution in the homogeneous case f = 0 on Ω = (0, 1).
For this, we make use of the Fourier method. The basic idea is separation of variables

u(x, t) = v(x)w(t) .

Inserting into the differential equation gives

w′

w
=
v′′

v
= const. =: λ

and thereby the eigenvalue problem

v′′ = −λv
w′ = −λw .

(7.10)

Solution of v′′ = −λv : Ansatz: v(x) = sin(λ
1
2x)

The ansatz suffices the differential equation, and by v(0) = v(1) = 0 follows

λk = (kπ)2 , k = 0, 1, 2, . . . .

Solution of w′ = −λkw :

w(t) = ake
−λkt .

Solution of the heat equation with zero-boundary data:

uk(x, t) = ake
−(kπ)2t sin(kπx) k = 0, 1, 2, . . . .
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Due to the linearity of the differential equation,

uN (x, t) =
N∑
k=0

uk(x, t) =
N∑
k=0

ake
−(kπ)2t sin(kπx)

is a solution for each N , which satisfies the boundary condition.
Continuity up the the initial condition:
Determine the coefficients ak such that

u0(x) =

∞∑
k=0

ak sin(kπx) .

Extending u0 to an uneven function on [−1, 1] and developing its Fourier series, one gets the
Fourier coefficients

ak = 2

1∫
0

u0(ξ) sin(kπξ) dξ .

If u0 is continuous and piecewise continuously differentiable, the Fourier series converges
point-wise to u0 (see Endl/Luh: Analysis II, theorem 4.5.2).
As solution to the differential equation one now suspects

u(x, t) =
∞∑
k=0

ake
−(kπ)2t sin(kπx) . (7.11)

To justify this approach we have to answer the following questions:

(i) Does the series (7.11) converge for each (x, t) ∈ Ω?

(ii) Can we differentiate term-wise? (Only then u suffices the differential equation.)

(iii) Is the solution continuous up to the initial condition?

Under specific assumptions all the questions can be answered with “yes”:

(i) Let supx∈(0,1) |u0(x)| ≤M . Then follows

|ak| ≤ 2M ,

and thus for each t ≥ δ > 0∣∣∣ake−(kπ)2t sin(kπx)
∣∣∣ ≤ 2M e−(kπ)2δ , k = 0, 1, 2, . . . .

The comparison test even gives uniform convergence for each fixed t > 0.

(ii) Alike one sees that

2M(kπ)2 e−δπ
2
e−k

2
, k = 0, 1, 2, . . .

dominates the term-wise, in t-direction differentiated series. Thus the term-wise dif-
ferentiated series converges uniformly and coincides with the corresponding derivative
of the series (see Endl/Luh, Analysis II, thm. 3.7.2). The analogue holds for all other
partial derivatives.
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(iii) Let
∞∑
k=1

|ak| <∞ . (7.12)

Then by the comparison test the series

∞∑
k=1

ake
−(kπ)2t sin(kπx)

converges uniformly in x ∈ [0, 1] and t ≥ 0. Thus the asymptote is continuous in
x ∈ [0, 1], t ≥ 0 (see Endl/Luh Analysis II, thm. 3.7.1). Furthermore we can exchange
limit and summation and get

lim
t→0

u(x, t) =

∞∑
k=0

lim
t→0

ake
−(kπ)2t sin(kπx) = u0(x) ∀x ∈ [0, 1] .

Sufficient for (7.12) is u0 being continuous, piecewise differentiable and u(0, t) =
u(1, t) = 0 (cf. Heuser, Lehrbuch zur Analysis, part 2, 1981, theorem 136.5).

We now have shown (together with theorem 7.3) the following existence theorem

Theorem 7.5 Let u0 be continuous, piecewise differentiable and u(0, t) = u(1, t) = 0. Then
the initial–boundary–value problem (7.9) has a unique solution u given by

u(x, t) =

∞∑
k=1

ake
−(kπ)2t sin(kπx)

with the Fourier coefficients

ak = 2

1∫
0

u0(ξ) sin(kπξ) dξ .

Note:
Inserting the formula for the Fourier series in the series (7.11), due to the uniform convergence
of the resulting series for t > 0, one can exchange integration and summation and thus gets
the representation

u(x, t) =

1∫
0

G(x, ξ, t)u0(ξ) dξ

with the Greens function

G(x, ξ, t) = 2
∞∑
k=1

sin(kπx) sin(kπξ)e−(kπ)2t .
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Note for x ∈ (0, 1)

G(x, x, t) = 2
∞∑
k=1

(sin(kπx))2e−(kπ)2t →∞, t→ 0

and thereby the solution of the Cauchy problem in Theorem 7.1. /

7.2 Weak Solutions

On the bounded domain Ω ⊂ IRn we consider the initial–value–boundary problem

ut = div (α(x)∇u) + f(x, t) , x ∈ Ω, t > 0
u(x, 0) = u0(x) , x ∈ Ω
u(x, t) = 0 , (x, t) ∈ ∂Ω× (0, T ] .

(7.13)

where 0 < α0 ≤ α(x) < α1 almost everywhere in Ω. As with elliptic problems, we cannot
expect classical solutions, if α 6∈ C1(Ω). We therefore want to expand the notation of weak
solutions from elliptic (= stationary parabolic) to parabolic problems.

As in the case of elliptic partial differential equations, we can find a weak formulation by
multiplying the differential equation (7.13) for fixed t > 0 with test functions v ∈ H1

0 (Ω),
then integrating, using the greens formula and exchanging the derivative w.r.t. t with the
integration.

Thus we get for every t ∈ (0, T ) the variational problem:

Find u : (0, T )→ H1
0 (Ω) such that

d

dt
(u(t), v) + a(u(t), v) = (f(t), v) ∀v ∈ H1

0 (Ω) (7.14)

if t ∈ (0, T ) and u(0) = u0.

We used the abbreviations

(u(t), v) =

∫
Ω

u(x, t)v(x) dx

a(v, w) =

∫
Ω

αvxwx dx

(f(t), v) =

∫
Ω

f(x, t)v(x) dx

To give sense to this kind of formulation we have to discuss the following questions:

1) Which maps u : (0, T )→ H1
0 (Ω) are possible?

2) How should the initial condition be attained?

3) How should the derivative d
dt be interpreted?
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We first tackle the first question and therefore consider the space C([0, T ],W ) of all contin-
uous functions v

[0, T ] 3 t 7→ v(t) ∈W .

Here let W be a Hilbert space with scalar product (·, ·)W and corresponding norm ‖ · ‖W .
Equipped with the norm

‖v‖C([0,T ],W ) := max
t∈[0,T ]

‖v(t)‖W ,

C([0, T ],W ) becomes a Banach space.

Example:
W = IR ⇒ C([0, T ], IR) = C([0, T ]) /

Example:
W = L2(Ω): Note that the resulting space C([0, T ], L2(Ω)) on the one hand is a space of
continuous maps, but on the other hand consists of functions v(x, t), which don’t need to be
continuous in x-direction (equivalence classes). For example is

v(x, t) = v1(x)v2(t) ∈ C([0, T ], L2(Ω))

if v1(x) ∈ L2(Ω) and v2(t) ∈ C([0, T ]). /

With the scalar product

(v, w)L2((0,T ),W ) :=

T∫
0

(v(t), w(t))W dt (7.15)

the linear space

LC((0, T ),W ) := {v ∈ C([0, T ],W ) |
T∫

0

‖v(t)‖2W dt <∞}

becomes pre-Hilbert. We denote the completion with respect to the by (7.15) induced norm
with

L2((0, T ),W ) .

Hereby, as with the special case

L2((0, T ), IR) = L2(0, T )

we are dealing with equivalence classes [v] of functions v : (0, T )→W , which may differ on
subsets of (0, T ) with Lebesgue measure zero.
As solution space we now take

C([0, T ], L2(Ω)) ∩ L2((0, T ), H1
0 (Ω)) .

The condition u ∈ C([0, T ], L2(Ω)) thereby ensures that the initial value u0 ∈ L2(Ω) can be
attained continuously.

u(x, 0) = u0 x ∈ Ω
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means in particular that

lim
t→0
‖u(·, t)− u0‖L2(Ω) = 0 . (7.16)

This solves question 2).
We now come to question 3). The property u ∈ L2((0, T ), H1

0 (Ω)) gives

(u(·), v) , a(u(·), v) ∈ L2(0, T ) ∀v ∈ H1
0 (Ω) , (7.17)

as
T∫

0

a(u(t), v)2 dt ≤ α2
1

T∫
0

‖u(t)‖2H1(Ω) ‖v‖
2
H1(Ω) dt <∞ .

The same accounts for the case f ∈ L2((0, T ), L2(Ω))

(f(t), v) ∈ L2(0, T )

for all v ∈ L2(Ω), because

T∫
O

(f(t), v)2 dt ≤
T∫

0

‖f(t)‖2L2(Ω) ‖v‖
2
L2(Ω) dt <∞ .

The time derivative d
dt can thus be interpreted in the weak sense we know, but from now on

on L2(0, T ).

Reminder: dw
dt ∈ L

2(0, T ) is called weak derivative of w ∈ L2(0, T ) if

T∫
0

w(t)ϕ′(t) dt = −
T∫

0

dw

dt
ϕ(t) dt

holds for all ϕ ∈ C∞0 (0, T ).
The weak formulation (7.14) of (7.13) thus is:

Find u ∈ L2((0, T ), H1
0 (Ω)), such that

−
T∫

0

(u(t), v)ϕ′(t) dt =

T∫
0

(−a(u(t), v) + (f(t), v))ϕ(t) dt (7.18)

holds for all v ∈ H1
0 (Ω) and all ϕ ∈ C∞0 (0, T ).

Let from now on u0 ∈ L2(Ω) and f ∈ L2((0, T ), L2(Ω)).

Definition 7.6 u ∈ C([0, T ], L2(Ω))∩L2((0, T ), H1
0 (Ω)) is called weak solution of the initial–

boundary–value problem (7.13) if u suffices the variational equality

d

dt
(u(t), v) + a(u(t), v) = (f(t), v) ∀v ∈ H1

0 (Ω) (7.19)

for almost all t ∈ (0, T ) in the sense of (7.18) and it achieves the initial condition u(0) = u0

in the sense of (7.16).
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As preparation for the proof of existence and uniqueness we need

Theorem 7.7 There exist functions ϕk ∈ H1
0 (Ω) , k = 1, 2, . . ., and corresponding µk ∈ IR

with
0 < µ1 ≤ µ2 ≤ . . . , lim

k→∞
µk =∞ ,

such that

a(ϕk, v) = µk(ϕk, v) ∀v ∈ H1
0 (Ω) (7.20)

holds and

{ϕk}k∈IN is an orthonormal basis of L2(Ω) . (7.21)

Proof:
As a(·, ·) is continuous and H1

0 (Ω)-elliptic, the variational problem

u ∈ H1
0 (Ω) : a(u, v) = (f, v) ∀v ∈ H1

0 (Ω)

has, according to theorem 5.31, a unique solution Lu ∈ H1
0 (Ω) for every f ∈ L2(Ω). The stability estimates

give the continuity of the solution operator L : L2(Ω) → H1
0 (Ω). We now equip H1

0 (Ω) with the new scalar
product a(·, ·) and consider the operator T : H1

0 (Ω) → H1
0 (Ω), defined by Tv = Lv ∀v ∈ H1

0 (Ω). By the
embedding theorem of Rellich (see theorem 5.28) follows with the continuity of L the compactness of T . Due
to the symmetry respectively the H1

0 (Ω)-ellipticity of a(·, ·), T is self-adjoint and positive on (H1
0 (Ω), a(·, ·))

(the latter says a(Tv, v) > 0 ∀v ∈ H1
0 (Ω), v 6= 0) The spectral theorem for compact operators in Hilbert

spaces (see Werner, Funktionalanalysis, 2. edition, theorem VI.3.2) now gives an a(·, ·)-orthonormal basis of
eigenvectors {ψk}k∈IN of T in (H1

0 (Ω), a(·, ·)) to a zero sequence of positive eigenvalues λk. By µk := λ−1
k and

ϕk := λ
1/2
k ψk follows the claim. 2

Note:
1) The statement of theorem 7.7 remains true if we replace H1

0 (Ω) by another, compactly
in L2(Ω) embedded Hilbert space H with an H-elliptic bilinear form a(·, ·).

2) The line (7.21) particularly implies

v =

∞∑
k=1

(v, ϕk)ϕk (Fourier expansion)

‖v‖2L2(Ω) =

∞∑
k=1

(v, ϕk)
2 (Parseval’s equality)

for all v ∈ L2(Ω).

3) In the case α ≡ 1 and Ω = (0, 1), we have

ϕk(x) =
√

2 sin(kπx) , x ∈ Ω = (0, 1)

µk = (kπ)2

for k = 1, 2, . . . (see [2, p. 228]).

Note the eigenfunctions and eigenvalues of the Laplace operator in our model problem
on Ω = (0, 1)× (0, 1) (see theorem 6.20). One can associate the eigenvalues µk with a
scale of frequencies of the eigenfunctions also in more general cases. /

Now we can prove the following representation theorem.
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Theorem 7.8 Let u ∈ C([0, T ], L2(Ω)) ∩ L2((0, T ), H1
0 (Ω)) be a solution of the variational

problem (7.19). Then u has the form

u(t) =
∞∑
k=1

(u0, ϕk)e
−µkt +

t∫
0

(f(s), ϕk)e
−µk(t−s) ds

ϕk .

Proof:
So let u be a solution. Then, in particular

u(t) ∈ L2(Ω) ∀t > 0

and thus

u(t) =

∞∑
k=1

(u(t), ϕk)ϕk ∀t > 0 . (7.22)

Inserting into the variational equality gives, with the use of (7.19) and (7.20) together with continuity of (·, ·)
and a(·, ·) in L2(Ω),

d

dt

∞∑
k=1

(u(t), ϕk)(ϕk, v) +

∞∑
k=1

(u(t), ϕk)µk(ϕk, v) = (f(t), v) ∀v ∈ H1
0 (Ω) .

In the next step we set v = ϕk, k = 1, 2 . . ., and achieve the ordinary differential equations

u′k(t) + µkuk(t) = (f(t), ϕk) (7.23)

for the (yet) unknown Fourier coefficients

uk(t) = (u(t), ϕk) , k = 1, 2, . . . .

The initial conditions

uk(0) = (u0, ϕk) (7.24)

follow by Fourier expansion of u0 and equating coefficients.
The solution of the initial value problem (7.23), (7.24) is

uk(t) = (u0, ϕk)e−µkt +

t∫
0

(f(s), ϕk)e−µk(t−s) ds .

This formula, which can be easily verified for C1-solutions uk, can be derived for continuous right-hand side
in (7.23) by variation of constants. Please note that this initial value problem can be solved for arbitrary
right-hand side in L2(0, T ) in the weak sense.
The proof for a unique solution of (7.23), (7.24) in this sense, given by the above formula, is left as an exercise
for the reader.
Finally, inserting the formula for the uk in the Fourier expansion (7.22) proves the claim. 2

Conclusion 7.9 The solution of the variational problem is determined uniquely as we know
(in the case of existence) the Fourier coefficients.

The goal of our investigations is the following concluding existence theorem.

Theorem 7.10 The initial–boundary–value problem (7.13) has the unique solution u ∈
C([0, T ], L2(Ω)) ∩ L2((0, T ), H1

0 (Ω)) given by

u(t) =

∞∑
k=1

(u0, ϕk)e
−µkt +

t∫
0

(f(s), ϕk)e
−µk(t−s) ds

ϕk . (7.25)
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Proof:
1. Step 1

We solve the problem for the approximation

u0,m =

m∑
k=1

(u0, ϕk)ϕk

of u0. The solution um is then given by

um(t) =

m∑
k=1

(u0, ϕk)e−µkt +

t∫
0

(f(s), ϕk)e−µk(t−s) ds

ϕk . (7.26)

This is shown by simply inserting and the use of the linearity of the weak derivative. Again we can
regard um as a weak solution of the initial value problem.

2. Step 2

We let m→∞ in: a) C([0, T ], L2(Ω)); b) L2((0, T ), H1
0 (Ω)).

a) We show that um is a Cauchy sequence in C([0, T ], L2(Ω)).

Therefore, let m < n arbitrarily but fixed. Then by the Parseval’s equality and the Cauchy–Schwarz
inequality, we get for each t ∈ [0, T ]

‖un(t)− um(t)‖L2(Ω) ≤

(
n∑

k=m+1

(u0, ϕk)2

) 1
2

+

 n∑
k=m+1

 t∫
0

(f(s), ϕk)e−µk(t−s) ds

2
1
2

≤

(
n∑

k=m+1

(u0, ϕk)2

) 1
2

+

 n∑
k=m+1

1

2µk

T∫
0

(f(s), ϕk)2 ds


1
2

.

For n,m→∞ the right hand side goes to 0 (and this uniformly in t ∈ [0, T ]), as we have

‖u0‖L2(Ω) =

(
∞∑
k=1

(u0, ϕk)2

) 1
2

and

‖f‖L2((0,T ),L2(Ω)) =

 T∫
0

‖f(t)‖2L2(Ω) dt


1
2

=

 T∫
0

∞∑
k=1

(f(t), ϕk)2 dt


1
2

.

Hereby, we use the Lebesque theorem of dominated convergence. Altogether we see that um is a
Cauchy sequence in C([0, T ], L2(Ω)), thus

um → u∗1 in C([0, T ], L2(Ω)) . (7.27)

b) We show that um is a Cauchy sequence in L2((0, T ), H1
0 (Ω)).

Inserting of the representation (7.26) gives

a(un(t)− um(t), un(t)− um(t)) =

n∑
k=m+1

µk

(u0, ϕk)e−µkt +

t∫
0

(f(s), ϕk)e−µk(t−s) ds

2

.

Using the H1
0 (Ω)-ellipticity of a(·, ·) and (a+ b)2 ≤ 2(a2 + b2), we get for a c > 0 and all t ∈ [0, T ]

‖un(t)− um(t)‖2H1(Ω) ≤
1

c
a(un(t)− um(t), un(t)− um(t))

≤ 2

c

n∑
k=m+1

µk

(u0, ϕk)2e−2µkt +

 t∫
0

(f(s), ϕk)e−µk(t−s) ds

2 .
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We have to integrate this estimate in t over [0, T ]. For a further estimate on the upper bound we
calculate

µk

T∫
0

e−2µkt dt =
1

2
(1− e−2µkT ) <

1

2

and

µk

T∫
0

 t∫
0

(f(s), ϕk)e−µk(t−s) ds

2

dt ≤ µk
T∫

0

t∫
0

e−2µk(t−s) ds

t∫
0

(f(s), ϕk)2 ds dt

≤ T

2

T∫
0

(f(t), ϕk)2 dt .

Thereby follows

T∫
0

‖un(t)− um(t)‖2H1(Ω) dt ≤
1

c

n∑
k=m+1

(u0, ϕk)2 + T

T∫
0

(f(t), ϕk)2 dt

 .

As above the right-hand side of this estimate vanishes for n,m→∞. Thus um is a Cauchy sequence
in L2((0, T ), H1

0 (Ω)), and by the completeness of the space follows the convergence

um → u∗2 in L2((0, T ), H1
0 (Ω)) . (7.28)

3. Step 3 (u∗1 = u∗2)

By (7.27) follows

um → u∗1 in L2((0, T ), L2(Ω)) ,

and (7.28) gives

um → u∗2 in L2((0, T ), L2(Ω)) .

So u∗1 = u∗2 = u∗ ∈ L2((0, T ), H1
0 (Ω)) ∩ C([0, T ], L2(Ω)) must hold.

4. Step 4 (u∗ is solution)

The derivation of (7.28) gives for all t ∈ [0, T ] the convergence

um(t)→ u∗(t) in H1
0 (Ω) .

Thereby we deduce, as above, the uniform convergence of

a(um(t), v)→ a(u∗(t), v)

and
(um(t), v)→ (u∗(t), v)

in t ∈ [0, T ] for all v ∈ H1
0 (Ω). But as

d

dt
(um(t), v) + a(um(t), v) = (f(t), v)

holds for all m ∈ IN and all v ∈ H1
0 (Ω), by known convergence results follows that also u∗ satisfies the

variational equality in the sense of (7.18).
To the initial condition: From (7.27) one gets

um(0)→ u∗(0) in L2(Ω) .

But on the other hand

um(0) =

m∑
k=1

(u0, ϕk)ϕk → u0 in L2(Ω) .

Thus u∗(0) = u0 must hold. Thereby u = u∗ is the solution of our problem. 2

From the representation (7.25) of the solution follows directly the continuous dependence on
the input data u0 and f . This results from the following a priori estimate.
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Theorem 7.11 It holds for all t ∈ [0, T ]

‖u(t)‖L2(Ω) ≤ ‖u0‖L2(Ω) e
−µ1t +

t∫
0

‖f(s)‖L2(Ω) e
−µ1(t−s) ds .

Proof:
For exercise. 2



8 Numerical Methods for Parabolic Problems

8.1 Time Integration

We consider the initial value problem

u ∈ C1([0, T ], IR) : u′ = ϕ(t, u) für t ∈ (0, T ] , u(0) = u0 .

For the simplicity of the discretization we assume an equidistant mesh

ti = i∆t i = 0, . . . , N

We now consider the one-step method

1

∆t
(ui+1 − ui) = Θϕ(ti+1, ui+1) + (1−Θ)ϕ(ti, ui)

for Θ ∈ [0, 1].
Intuitively we replace the exact solution between ui and ui+1 by a straight line with the
mean gradient Θu′(ti+1) + (1−Θ)u′(ti).

i ti+1

u i

u i+1

t i
u’( )

t

t

i+1

i

( )u’

i+1

Figure 8.1: integration step

The values Θ = 0, 1
2 , 1 are of specific interest. One gets:

Θ = 0 explicit Euler method
Θ = 1

2 midpoint rule
Θ = 1 implicit Euler method

117
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Note that for Θ = 1
2 , 1 the calculation of ui+1 might imply solving an in some cases

nonlinear equation. Such methods are called implicit. For Θ = 0, ui+1 is given explicitly.

We examine the consistency of these methods (as we did for the difference methods in the
elliptic case) by looking at the truncation error. The truncation error is given by inserting
the exact solution into the difference equation.

So we get by Taylor expansion

τ(ti) =
1

∆t
(u(ti+1)− u(ti))−Θϕ(ti+1, ui+1) − (1−Θ)ϕ(ti, ui)

= u′(ti) +
∆t

2
u′′(ti) +O

(
(∆t)2

)
−
(
Θ(u′(ti+1)− u′(ti)) + u′(ti)

)
= (

1

2
−Θ) ∆t u′′(ti) +O

(
(∆t)2

)
=

{
O (∆t) Θ 6= 1

2

O
(
(∆t)2

)
Θ = 1

2

.

Thus the method is of first order for Θ 6= 1
2 and of second order for Θ = 1

2 .

We consider the stability of the methods. Corresponding to the stability concept of Dahlquist
(see [7, Kap. 6, 7]), we investigate the initial value problem

u′ = −λu t > 0 , λ > 0 with u(0) = u0 (8.1)

with the solution u(t) = u0 e
−λt and demand that the corresponding approximations decay

like u or at least do not grow. The use of our discretization leads to

1

∆t
(ui+1 − ui) = Θ(−λui+1) + (1−Θ)(−λui) ,

so

ui+1 =
1− (1−Θ) ∆t λ

1 + Θ ∆t λ
ui

ui+1 =

(
1− (1−Θ) ∆t λ

1 + Θ ∆t λ

)i
u0 .

Boundedness of |ui| is thus equivalent to

|R(λ∆t)| :=
∣∣∣∣1− (1−Θ) ∆t λ

1 + Θ ∆t λ

∣∣∣∣ ≤ 1 , (8.2)

and the “<”-sign takes care of the decay.

In the case 0 ≤ Θ < 1
2 , (8.2) is equivalent to the step-size restriction

λ∆t ≤ 2

1− 2Θ
, 0 ≤ Θ <

1

2
,

whereas (8.2) for 1
2 ≤ Θ ≤ 1 always holds. With that we get

Θ = 0 explicit Euler, stable if ∆t ≤ 2
λ

Θ = 1
2 , 1 midpoint rule, implicit Euler, always stable
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There still is a slight difference between Θ = 1
2 and Θ = 1. Obviously we have

lim
∆t→0

R(∆t λ) = |1−Θ−1|


< 1 if Θ > 1

2

≥ 1 if Θ ≤ 1
2

.

Hence the implicit Euler acts damping even for arbitrarily big time-steps. Such methods are
called strongly stable. The midpoint rule doesn’t have this property and thus, as we will see,
is not so useful for long term calculations where many errors can accumulate.

8.2 Semidiscrete Methods

8.2.1 Method of Lines

Analogously to the Galerkin method for elliptic problems we now choose a sequence of finite
dimensional subspaces

Sh ⊂ H1
0 (Ω) .

The discretization parameter h = hj , j = 0, 1, . . . stands for example for the maximal
diameter of all triangles of the triangulation.

We now want to approximate the continuous solution u(t) by a uh(t) ∈ Sh for all t ∈ [0, T ].
This corresponds to a discretization in space. In analogy to the continuous problem we now
formulate the corresponding semidiscrete problem:

Find uh ∈ C([0, T ], Sh), such that

d

dt
(uh(t), v) + a(uh(t), v) = (f(t), v) ∀v ∈ Sh

uh(0) = u0,h ∈ Sh .
(8.3)

Note that the norms ‖ · ‖L2(Ω) and ‖ · ‖H1(Ω) are equivalent on the finite dimensional space
Sh, i.e. there exists a c > 0 such that

c ‖v‖H1(Ω) ≤ ‖v‖L2(Ω) ≤ ‖v‖H1(Ω) ∀v ∈ Sh .

Thus

C([0, T ], Sh,L2(Ω)) = C([0, T ], Sh,H1(Ω)) ⊂ L2((0, T ), Sh,H1(Ω)) ,

where the additional index in Sh denotes the norm. Opposite to the continuous case (see
theorem 7.10) the space C([0, T ], Sh) is already the solution space for the problem (8.3).

Lemma 8.1 There exist functions ϕkh ∈ Sh , k = 1, . . . , N , and corresponding µk,h ∈ IR
with

0 < µ1 ≤ µ1,h ≤ µ2,h ≤ . . . ≤ µN,h

(where µ1 comes from theorem 7.7 ), such that the following holds

a(ϕk,h, v) = µk,h(ϕk,h, v) ∀v ∈ Sh ,

ϕk,h is orthonormal basis of Sh,L2(Ω) .



120 8 Numerical Methods for Parabolic Problems

Proof:
See theorem 7.7 and the following remark 1). For the claim µ1 ≤ µ1,h see [18, p. 146]. 2

Theorem 8.2 The semidiscrete problem (8.3) has a uniquely determined solution uh, and

uh(t) =
N∑
k=1

(u0,h, ϕk,h)e−µk,ht +

t∫
0

(f(s), ϕk,h)e−µk,h(t−s) ds

ϕk,h .

Proof:
Transcribe the proof to theorem 7.10. 2

We want to show the convergence of uh to u. An important step in that direction is the
following a priori error estimate. To this end we define C1([0, T ], H1

0 (Ω)) as the space of all
u ∈ C([0, T ], H1

0 (Ω)), whose weak derivative d
dtu(t) = u′(t) for each t ∈ [0, T ] appear as limit

lim
∆t→0

u(t+ ∆t)− u(t)

∆t

in the H1(Ω)-norm and which is in C([0, T ], H1
0 (Ω)). Therewith the in (8.3) appearing

derivative is even classical for each fixed v (see (8.4) in the following proof).

Theorem 8.3 Let u ∈ C1([0, T ], H1
0 (Ω)). Then

‖uh(t)− u(t)‖L2(Ω) ≤ ‖u0,h − Phu0‖L2(Ω) e
−µ1t + ‖(I − Ph)u(t)‖L2(Ω)

+

t∫
0

∥∥∥∥(I − Ph)
du

dt
(s)

∥∥∥∥
L2(Ω)

e−µ1(t−s) ds .

holds for all t ∈ [0, T ]. Here I is the identity on H1
0 (Ω) and Ph : H1

0 (Ω) → Sh the Ritz
projection, hence

Phw ∈ Sh : a(Phw, v) = a(w, v) ∀v ∈ Sh

for all w ∈ H1
0 (Ω).

Proof:
Step 1: (defect problem)
As u and uh fulfill the variational equality in (8.3) for all Sh ⊂ H1

0 (Ω), with the definition of Ph follows:

d

dt
(uh(t)− Ph u(t), v) + a(uh(t)− Ph u(t), v) =

d

dt
(u(t)− Ph u(t), v) = ∀v ∈ Sh .

By the H1
0 (Ω)-ellipticity of a(·, ·) follows the continuity of Ph, as Ph is a a(·, ·)-orthogonal projection. Fur-

thermore, due to u ∈ C1([0, T ], H1
0 (Ω)), it holds∥∥∥∥Ph u(t+ ∆t)− Ph u(t)−∆t Ph

du

dt

∥∥∥∥
H1(Ω)

≤ const.

∥∥∥∥u(t+ ∆t)− u(t)−∆t
du

dt

∥∥∥∥
H1(Ω)

= o(|∆t|)

Thereby we have proven Phu ∈ C1([0, T ], H1
0 (Ω)) with(
d

dt
Ph

)
u = Ph

du

dt
.
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Inserting gives

d

dt
(uh(t)− Ph u(t), v) + a(uh(t)− Ph u(t), v) = (

du

dt
− Ph

du

dt
, v) ∀v ∈ Sh . (8.4)

(How to justify d
dt

(u(t), v) = ( du
dt
, v) ?)

Moreover we have

uh(0)− Phu(0) = u0,h − Phu0 . (8.5)

Step 2: (a priori estimate)
uh(t) − Phu(t) is a solution of the defect problem (8.4), (8.5) and thus satisfies the a priori estimate from
theorem 7.11. Thereby one first has to insert the discrete eigenvalue µ1,h instead of µ1, and by µ1 ≤ µ1,h

follows the claim. 2

Now we can proof the intended convergence theorem.

Theorem 8.4 Let u ∈ C1([0, T ], H1
0 (Ω)),

inf
vh∈Sh

‖v − vh‖H1(Ω) → 0

for all v ∈ H1
0 (Ω) and also

‖u0,h − u0‖L2(Ω) → 0 .

Then follows the convergence

uh → u in C([0, T ], L2(Ω)) .

Proof:
Step 1:
We consider the series hi → 0. For a fixed v ∈ C([0, T ], H1

0 (Ω)) we set

gi := ‖(I − Phi) v(·)‖H1(Ω) ∈ C([0, T ]) .

We now want to show

max
t∈[0,T ]

gi(t)→ 0 für i→∞ . (8.6)

The Céa-Lemma 5.16 gives for each fixed t ∈ [0, T ]

‖(I − Ph) v(t)‖H1(Ω) ≤
Γ

γ
inf

vh∈Sh
‖v(t)− vh‖H1(Ω) ,

thus by assumption
gi(t)→ 0 ∀t ∈ [0, T ] .

As all Ph are a(·, ·)-orthogonal projections, the estimate

‖Phv(t)‖H1(Ω) ≤
Γ

γ
‖v(t)‖H1(Ω)

holds uniformly in h. This, together with the continuity of v : [0, T ] → H1
0 (Ω), gives the equicontinuity of

{gi | i ∈ IN}, i.e. for each t∗ ∈ [0, T ] and each ε > 0 there exists a δ > 0, such that

|t− t∗| < δ =⇒ |gi(t)− gi(t∗)| < ε ∀i ∈ IN .

Now (8.6) follows by a simple contradiction or directly from the Arzelà-Ascoli theorem.

Step 2:
We use the result (8.6) in the case v = u and v = du

dt
and get

‖u0,h − Phu0‖L2(Ω) ≤ ‖u0,h − u0‖L2(Ω) + ‖(I − Ph)u(0)‖L2(Ω) → 0 ,

max
t∈[0,T ]

‖(I − Ph)u(t)‖L2(Ω) ≤ max
t∈[0,T ]

‖(I − Ph)u(t)‖H1(Ω) → 0 ,



122 8 Numerical Methods for Parabolic Problems

as well as

max
t∈[0,T ]

t∫
0

∥∥∥∥(I − Ph)
du

dt
(s)

∥∥∥∥
L2(Ω)

e−µ1(t−s) ds ≤ 1

µ1
max
s∈[0,T ]

∥∥∥∥(I − Ph)
du

dt
(s)

∥∥∥∥
L2(Ω)

→ 0 .

Now follows the claim from the a priori error estimate of theorem 8.3. 2

The semidiscrete problem (8.3) is an initial value problem for a system of ordinary differential
equations. Namely choosing a basis {λi , i = 1, . . . , N} of Sh, the representation

uh(t) =
N∑
i=1

ui(t)λi

leads to
MU̇ +AU = F t ∈ (0, T )

U(0) = U0 .
(8.7)

Here we have
M = ((λi, λj))

N
i,j=1 mass matrix

A = (a(λi, λj))
N
i,j=1 stiffness matrix

F = ((f(t), λi))
N
i=1 right-hand side

U = (ui(t))
N
i=1 unknown-vector

U0 = (ui(0))Ni=1 u0,h =
N∑
i=1

ui(0)λi .

For solving problems of the form (8.7) there are many methods (and codes) available. How-
ever, due to the huge differences in the the decay of the components of the the solution (note
the representation in theorem 8.2), this is a stiff system with certain stability problems.

Example:
Consider the problem (8.3) with the space Sh of the linear finite elements on Ω = (0, 1)
and h = (N + 1)−1 for some N ∈ IN. Constructing the system in (8.7) and joining the h-
dependencies in the stiffness matrix by dividing through h, one obtains the N×N -tridiagonal
matrices

1

h
M =

1

6


4 1
1 4 1

. . .

1 4 1
1 4

 und
1

h
A =

1

h2


2 −1
−1 2 −1

. . .

−1 2 −1
−1 2

 .

In practice the matrixM/h becomes the identity matrix by the so called “lumping”: Basically
one simply sums up the row values and writes the sum to the diagonal. This is alike using the
trapezoid rule as quadrature rule for the calculation of the values of M . Hereby one saves the
construction of M−1, and astonishingly, this simplification leads to the same approximation
quality (see [21, ch. 15])! This is reasonable as the mass matrix M leads to a correlation of
the time derivatives in different points—a phenomenon which occurs due to the discretization
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and does not even exist in the continuous problem. In this sense, lumping can be regarded
as a rectification of the discrepancy between the discrete and continuous problem.

The matrix A/h2 has the eigenvalues λi = 4h−2 sin2(iπ2h), i = 1, . . . , N (see the proof of
theorem 6.20), thus λi ≈ (iπ2 )2 for small h, i.e. a finer space discretization leads to a bigger
range of eigenvalues. A numeric treatment of the arising initial value problem with explicit
methods would now, like in section 8.1, require a step-size restriction in the time. Concretely,
as λN is of the order of h−2, one would have to attend the constraint

∆t ≤ 1

2(1−Θ)
h2 .

Thus one has to use implicit methods for such problems, where these stability assumptions
do not have to be satisfied (which here is the case for the fully implicit method with Θ = 1).

The need of a time-step restriction for Θ = 0 (explicit) follows from a investigation of the
numerical domain of dependence.

t∆

h

Figure 8.2: numerical domain of dependence

After the first time-step one would have to calculate the vector U1 = (Ui,1)Ni=1 with

U1 = U0 − (∆t/h2)AU0 + ∆t F (0)

as approximation to (ui(∆t))
N
i=1.

But, as seen in section 7.1.2 (see the last remark: Greens function!), the domain of depen-
dence of u(xi,∆t) consists of the whole interval (0, 1), the numerical domain of dependence
of Ui,1 is only ui−1(0), ui(0) and ui+1(0). Now we need ∆t

h → 0 to widen this cone asymptot-
ically, which means ∆t has to vanish faster then h. Otherwise one could change U0 beyond
xi ± h (xi = i/N), without influencing the approximation Ui,1 of u(xi,∆t) Stability rule

(Courant, Friedrichs, Levi):

The numerical domain of dependence has to approximate the continuous one.
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This CFL-condition is an important rule of thumb for the assessment of the stability prop-
erties of a numerical method.

The completely implicit method needs no time-step restriction. In this case the numerical
domain of dependence consists of the whole previous space grid. In particular one has to
solve the equation system

(I + (∆t/h2)A)U1 = U0 + ∆t F (0)

and one can show that the matrix (I+(∆t/h2)A)−1, which has to be applied to the previous
time layer, is fully populated with positive coefficients. /

For further considerations regarding the stability of problems of the kind (8.7) we refer to
the book of P. Deuflhard and F. Bornemann [7].

Note:
A change of the dimension of Sh, and thus of the accuracy of the approximation, changes the
number of unknowns in (8.7) and requires a restart of the time integration. This imposes
constraints on the adaptive choice of the space-discretization, which become painful in 2 and
more space dimensions. /

8.2.2 Rothe’s Method

In the proof of existence in section 7.1.2 as well as in the method of lines we replaced the
initial–boundary–value problem for the heat equation with a initial value problem for a big
system of ordinary differential equations. We now want to formulate the weak formulation
of 7.13 (see (7.18)) directly as an initial value problem in an infinite dimensional function
space. For this purpose we need some preparation.
Each g ∈ L2(Ω) defines by v 7→ (g, v) , v ∈ H1

0 (Ω) a bounded linear functional on H1
0 (Ω),

thus in this sense

H1
0 (Ω) ⊂ L2(Ω) ⊂ H1

0 (Ω)′ !

For each w ∈ H1
0 (Ω) is a(w, ·) ∈ H1

0 (Ω)′! Thereby

Aw ∈ L2(Ω) : (Aw, v) = a(w, v) ∀v ∈ H1
0 (Ω) (8.8)

defines a linear (unbounded!) mapping

A : D(A) ⊂ H1
0 (Ω)→ L2(Ω)

where

D(A) := {w ∈ H1
0 (Ω) | (8.8) has a solution } .

A is called L2-representation of the bilinear form a(·, ·).

Example:
In the case a(v, w) =

∫
Ω∇v∇w dx it holds

D(A) = H2(Ω) ∩H1
0 (Ω)

and
Aw = −∆w , w ∈ D(A) .
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By completion of C1([0, T ], L2(Ω)) with respect to the scalar product

(v, w)H1((0,T ),L2(Ω)) :=

T∫
0

(v(t), w(t)) dt+

T∫
0

(v′(t), w′(t)) dt ,

we obtain the space H1((0, T ), L2(Ω)). This space consists, as in the real valued case, of all
(equivalence classes of) functions v ∈ L2((0, T ), L2(Ω)) whose weak derivative v′ again is in
L2((0, T ), L2(Ω)). Thereby v′ is called weak derivative if

T∫
0

(v(t), ϕ′(t)) dt = −
T∫

0

(v′(t), ϕ(t)) dt

holds for all ϕ ∈ C∞0 ((0, T ), L2(Ω)). (One defines the space C∞0 ((0, T ), L2(Ω)) analogous to
the case of real valued functions)

We now consider the following initial value problem in L2(Ω):

Find u ∈ L2((0, T ), H1
0 (Ω)) ∩H1((0, T ), L2(Ω)) such that

u′ −∆u = f

u(0) = u0
(8.9)

holds in L2(Ω). The initial value is attained continuously in L2(Ω), since we have as with
real valued functions

Lemma 8.5

H1((0, T ), L2(Ω)) ⊂ C([0, T ], L2(Ω)) .

The relationship to weak solution is explained by the following theorem.

Theorem 8.6 Each solution of (8.9) is a weak solution of (7.13). Conversely, each solution
u ∈ H1((0, T ), L2(Ω)) of (7.13) a solution of (8.9).

Proof:
Let u be a solution of (8.9). Multiplication with an arbitrary v ∈ H1

0 (Ω) and integration over Ω gives

(u′(t), v) + (Au(t), v) = (f(t), v) ∀t ∈ (0, T ) . (8.10)

Let ϕ ∈ C∞0 ([0, T ]). Then vϕ ∈ C∞0 ((0, T ), L2(Ω)) with (vϕ)′ = vϕ′ holds (why?), and due to u ∈
H1((0, T ), L2(Ω))

T∫
0

(u′(t), v)ϕ(t) dt =

T∫
0

(u′(t), vϕ(t)) dt = −
T∫

0

(u(t), vϕ′(t)) dt

= −
T∫

0

(u(t), v)ϕ′(t) dt .

Thus (u(·), v) is weakly differentiable with

(u′(t), v) =
d

dt
(u(t), v) ∀v ∈ H1

0 (Ω) . (8.11)
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By definition also

(Au, v) = a(u, v) ∀v ∈ H1
0 (Ω) .

Inserting into (8.10) leads to

d

dt
(u(t), v) + (Au(t), v) = (f(t), v) ∀v ∈ (0, T ) .

Considering lemma 8.5, u is a weak solution.
Let conversely u ∈ H1((0, T ), L2(Ω)) be a weak solution, we again have (8.11) and thus

a(u(t), v) = (f(t)− u′(t), v) ∀v ∈ H1
0 (Ω) .

As f(t)− u′(t) ∈ L2(Ω) , u(t) ∈ D(A) holds for all t ∈ (0, T ), and we get

(u′(t) +Au(t)− f(t), v) = 0 ∀v ∈ H1
0 (Ω) .

Finally, H1
0 (Ω) ⊂ L2(Ω) is dense and thus

u′(t) +Au(t) = f(t) f.ü. in (0, T ) .

The formulation (8.9) is the origin of semigroup methods for evolutionary problems. We
refer to [19, chapter 111] and the there cited literature.

Main idea of the Rothe method: (Original article [20])

a) Semi-discretization in t: Transfer known techniques for solving ordinary initial value
problem in IRm to the initial value problem (8.9) (order and step-size control)

b) Discretization in space: The resulting space problems have to be solved so precisely
that the properties of the time discretization survive.

Example: (Implicit Euler method for step-size ∆t)
In each time-step one has to solve the space problem

U(ti)− U(ti−1) + ∆t AU(ti) = ∆t f(ti)

or equivalently the variational problem

(U(ti), v) + ∆t a(U(ti), v) = (U(ti−1) + ∆t f(ti), v) ∀v ∈ H1
0 (Ω) . (8.12)

For solving (8.12) one now can use known methods (and codes) for elliptic problems. In
particular one can have a different space grid for each time-step. To keep the accuracy
requirements for the space discretization as low as possible, one should use preferably robust
time integrators. For example, extrapolation methods are ruled out, as the underlying
problem is badly conditioned for growing orders. Details can be found in the newest works
of F. Bornemann [3, 4, 5]. /
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