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Problem 1 (8 programming points)
Consider the variational equality

u ∈ H1
0 (Ω) a(u, v) = l(v) ∀v ∈ H1

0 (Ω)

with a H1
0 -elliptic, symmetric bilinearform a, l ∈ (H1

0 (Ω))′ and the finite element solu-
tions uS ∈ S(1) and uQ ∈ S(2). Assume the saturation assumption

∃β ∈ (0, 1) : ‖u− uQ‖a ≤ β‖u− uS‖a (1)

is fullfilled.

a) Show the following estimate for the discretezation error:√
1− β2‖u− uS‖a ≤ ‖uS − uQ‖a ≤ ‖u− uS‖a.

b) Write a Matlab programme A = assemble P2(grid, local assem, Q), which
assembles the stiffness matrix and the mass matrix for quadratic finite elements,
using the corresponding local assemblers and appropriate quadrature rules. Note
that there are dgrees of freedom on the edges.

c) Use your programme and the programmes from the homepage to calculate the a
posteriori error estimate ‖uS−uQ‖a for the solution of the problem given in problem
1d) of exercise 9 on an uniform grid Th on Ω = (0, 1)2 with different h. Use the
hierarchical P 2 basis here, not the Lagrange basis. Plot the error ‖uS −uQ‖a over
h in a suitable scale and interprete your results on the background of the a priori
error estimates from the lecture.



d) Define the bilinearform

b(u, v) =
∑
E∈E

uxEvxEa(λE , λE)

in the space V = span{λE |E ∈ E}, where E is the set of inner edges and λE the P 2

basis function associated to midpoint xE of the edge E ∈ E . Why can ũQ = uS+d
with

d ∈ V : b(d, v) = l(v)− a(uS , v) ∀v ∈ V

be interpreted as an inexact evaluation of uQ? Use your programme calculate and
plot the error estimate ‖uS − ũQ‖a analogue to part c). Compare and interprete
your results.

Problem 2
Prove the inverse estimate

|v|1 ≤ ch−1‖v‖0
for piecewise linear finite element functions v ∈ Sh. Does the estimate also hold for
higher order finite element functions?

Problem 3
Let Ω = (a, b) and Tk, k = 0, . . . , j, be a sequence of grids as resulting from the successive
bisection of the initial grid T0 = {[a, b]} with mesh size hk = (b − a)2−k. Consider the
space Sk of piecewise affine functions on the intervalls t ∈ Tk vanishing at a and b with

the nodal basis {λ(k)p , p ∈ Nk}, k = 0, . . . , j. The set of nodes Tk consists of the set of
interior end points of the intervalls t ∈ Tk. Then the the so-called hierarchical basis ΛHB

is defined by

ΛHB =

j⋃
k=1

Λ(k), Λ(k) = {λ(k)p | p ∈ Nk \ Nk−1}.

a) Show that the hierarchical basis ΛHB is orthogonal w.r.t. the energy scalar product

a(v, w) =

∫
[a,b]

v′w′ dx

on H1
0 (Ω).

b) Use the results from a) to derive an exact solver for the linear system associated
with the finite element approximation

uh ∈ Sh : a(uh, v) = l(v) ∀v ∈ Sh.



Problem 4 (extra points)
Consider the smoothing property

〈Akv, v〉 ≤ ω0〈Bkv, v〉 ∀v ∈ Rnk (2)

for symmetric positive definite matrices Ak, Bk ∈ Rnk .

a) Show that the smoothing property implies

λmax(B−1k Ak) ≤ ω0.

b) Show that the sequence uνk generated by

Bk(u
ν+1
k − uνk) = bk −Akuνk

converges to the solution uk of Akuk = bk if (2) holds with ω0 < 2.

Problem 5 (extra points)

a) Show that the multilevel Gauß-Seidel method is equivalent to the multigrid V-cycle
(algorithm 6.2 in the lecture notes).

b) Derive an algebraic representation of the multigrid V-cycle.

c) Implement a multigrid V-cycle for the Poisson problem

−∆u = 1 on [0, 1], (3)

u(0) = u(1) = 0.

As a smoother implement a Gauß–Seidel as well as a Jacobi method.

d) Calculate the exact solution u∗ of (3). Use a V-cycle with Gauß–Seidel smoother
and a V-cycle with Jacobi smoother, respectively to calculate an approximative
solution for the initial iterate u0 = 0 on a grid with 6 levels and 64 elements. Plot
the error ei = ‖ui − u∗‖A as a function of the iteration step i. Based on these
results estimate the convergence rates and plot them as a fuction of the number of
grid levels for grids with up to 12 levels. Are the convergence rates bounded from
above by a constant c < 1 or do they converge to 1 for finer grids?


