Department of Mathematics & Computer Science Freie Universität Berlin Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 8 for the lecture NUMERICS III SoSe 2015

Due: till Tuesday, 16. June

Problem 1

Let $\Omega \in \mathbb{R}^2$ be a domain with polygonal boundary and \mathcal{T} a triangulation of Ω . Show that

$$S^{(m)} \subset H^1(\Omega),$$

and derive the weak derivative of a function $v \in S^{(m)}$.

Problem 2

Consider the grid $a = x_0 < x_1 < \ldots < x_n = b$ on the interval (a, b). Let u be the solution of

$$u \in H_0^1(a, b)$$
: $(u', v') = (f, v) \quad \forall v \in H_0^1(a, b)$

and $u_h \in S_h$ the approximation in the linear finite element space $S_h \subset H_0^1(a, b)$ on the above grid. Show that u_h coincides with the linear interpolation of u on the grid, i.e. $u_h(x_i) = u(x_i)$ for $i = 0, \ldots, n$.

Problem 3 (6 programming points)

To solve a variational problem in a finite dimensional space V we need to assemble a matrix $A \in \mathbb{R}^{n \times n}$ with $A_{i,j} = a(\lambda_i, \lambda_j)$ where $\{\lambda_1, \ldots, \lambda_n\}$ is a basis of V.

- a) Make yourself familiar with the MATLAB programms basis.m and quadrature.m on the homepage.
- b) Write a MATLAB programm A = assemble_stiff(S, B, Q), which assembles the bilinearform

$$\int_{\tau} \nabla u(x) \cdot \nabla v(x) dx$$

for the basis $\{\lambda_{i,\tau}\}$ on a triangle τ given by the columns of the matrix S. The basis $\{\lambda_{i,\tau}\}$ on τ results from a transformation of the basis given by B on the unit simplex. Use the quadrature rule Q for evaluation of the integrals.

Test your programm with B = basis(1), Q = quadrature(1) and three triangles of your choice. What happens, if you scale one triangle with different factors h?

c) Analog to b) write a MATLAB programm M = assemble_mass(S, B, Q), which assembles the bilinearform

$$\int_{\tau} u(x)v(x)dx$$

Add a Gauß quadratur rule to quadrature.m, which is of order $p \ge 2$ on the unit simplex in \mathbb{R}^2 . Test your programm with B = basis(1) and the new quadratur rule Q = quadrature(2) and triangles of your choice. What happens, if you scale one triangle with different factors h?