Fachbereich Mathematik und Informatik Freie Universität Berlin Prof. Dr. Christof Schütte, Rudolf Huttary

8. Übung zur Vorlesung COMPUTERORIENTIERTE MATHEMATIK II SS 2017

Abgabe: Montag 26.6.2017 (14:00)

1. Aufgabe (8 TP)

Zeigen Sie die Bemerkung auf Seite 35 im Skript zur CoMa 2: Das implizite Euler-Verfahren (3.37) ist konsistent mit der Ordnung p = 1.

2. Aufgabe (12 PP)

Schreiben Sie ein MATLAB-Programm [x,t] = theta_lin(theta,lambda,f,x0,T,tau), das das Anfangswertproblem

$$x'(t) = \lambda x(t) + f(t), \qquad x(0) = x_0$$

im Intervall (0,T] mit dem θ -Verfahren

$$x_{k+1} = x_k + \tau(1-\theta)(\lambda x_k + f(t_k)) + \tau\theta(\lambda x_{k+1} + f(t_{k+1})).$$

für $\theta \in [0, 1]$ zur Schrittweite τ numerisch löst und die Lösung x_k sowie die Zeit t_k für alle Gitterpunkte zurückgibt.

- a) Gegeben seien $f(t) = 4\pi \cos(4\pi t) \lambda \sin(4\pi t)$, $\lambda = -1$, $x_0 = 1$ und T = 2. Approximieren Sie für $\tau = T/100$ eine Lösung des Anfangswertproblems jeweils für $\theta = 0, 0.5, 1$, und plotten Sie diese gegen die exakte Lösung.
- b) Wählen Sie Schrittweiten $\tau = T/n$ mit geeigneten $n \in 10, ..., 10^5$. Plotten Sie den Diskretisierungsfehler über n in einer geeigneten Skala, so daß man die Konvergenzordnung der drei Verfahren ablesen kann.

Allgemeine Hinweise

Die Aufgaben sollten in Zweiergruppen gelöst und bei Ihrem Tutor abgegeben werden. Programmcode senden Sie bitte als lauffähiges (!) Matlab-Script per Email an Ihren Tutor. (Tony Schwedek <tony.schwedek@fu-berlin.de>, Daniel Seeler <danielseeler@zedat.fu-berlin.de>).