Fachbereich Mathematik & Informatik

Freie Universität Berlin

Prof. Dr. Ralf Kornhuber, Tobias Kies

10. Übung zur Vorlesung

Computerorientierte Mathematik II

SoSe 2018

http://numerik.mi.fu-berlin.de/wiki/SS_2018/CoMaII.php

Abgabe: Donnerstag, 05. Juli 2018, 12:15 Uhr

Die Punkte unterteilen sich in Theoriepunkte (TP) und Programmierpunkte (PP). Bitte beachten Sie die auf der Vorlesungshomepage angegebenen Hinweise zur Bearbeitung und Abgabe der Übungszettel, insbesondere der Programmieraufgaben.

1. Aufgabe (6TP)

Zu

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & -5 \end{pmatrix}, \qquad x_0 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

betrachten wir das Anfangswertproblem

$$x'(t) = Ax(t), t \in (0,T], x(0) = x_0.$$

- a) Berechnen Sie die Eigenwerte und Eigenvektoren von A.
- b) Bestimmen Sie eine Lösung dieses Anfangswertproblems. Geben Sie Ihre Lösung ohne Verwendung der Matrix-wertigen Exponentialfunktion an.
- c) Berechnen Sie die absolute Kondition des Anfangswertproblems.

2. Aufgabe (5 TP)

Für $x: [0,T] \to \mathbb{R}^m$ betrachten wir das Anfangswertproblem

$$x'(t) = Ax(t), t \in (0, T], x(0) = x_0$$
 (1)

mit einer symmetrischen Matrix $A \in \mathbb{R}^{m \times m}$. Beweisen Sie für zwei Lösungen x, \tilde{x} von (1) zu Anfangswerten $x_0, \tilde{x_0} \in \mathbb{R}^m$ und den größten Eigenwert λ_1 von A die Abschätzung

$$\max_{t \in [0,T]} \|x(t) - \tilde{x}(t)\|_2 \le \max_{t \in [0,T]} e^{\lambda_1 t} \|x_0 - \tilde{x}_0\|_2.$$

3. Aufgabe (5 TP)

Sei $A \in \mathbb{R}^{m \times m}$ symmetrisch, $x_0 \in \mathbb{R}^m$ und $f \colon \mathbb{R} \to \mathbb{R}^m$. Beweisen Sie, dass die Funktion

$$x(t) = e^{tA}x_0 + \int_0^t e^{(t-s)A}f(s) ds$$

eine Lösung des Anfangswertproblems

$$x'(t) = Ax(t) + f(t), x(0) = x_0$$

ist.

4. Aufgabe (4 Bonus TP)

Sei $A \in \mathbb{R}^{m \times m}$ symmetrisch und $x_0 \in \mathbb{R}^m$. Weiter sei $T \in \mathbb{R}^{m \times m}$ eine Orthogonalmatrix und $D \in \mathbb{R}^{m \times m}$ eine Diagonalmatrix, sodass $A = TDT^T$ gilt. Zeigen Sie, dass die Iterierten des expliziten Euler-Verfahrens angewendet auf das Anfangswertproblem

$$x'(t) = Ax(t), \qquad x(0) = x_0$$

durch

$$x_k = T(I + \tau D)^k T^T x_0$$

gegeben sind.