Fachbereich Mathematik & Informatik Freie Universität Berlin Prof. Dr. Carsten Gräser, Ana Djurdjevac

Exercise 2 for the lecture NUMERICS III SoSe 2018 http://numerik.mi.fu-berlin.de/wiki/SS_2018/NumericsIII.php

Due: Wed, 05-09-2018

Problem 1 (4 TP)

Let V be normed space over \mathbb{R} with norm $\|\cdot\|$. Prove that $\|\cdot\|$ is induced by some inner product $\langle \cdot, \cdot \rangle$ i.e. $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$ if and only if the parallelogram identity

$$2\|u\|^{2} + 2\|v\|^{2} = \|u + v\|^{2} + \|u - v\|^{2}$$
(1)

holds for all $u, v \in V$.

Give an interpretation of the parallelogram identity (1).

Problem 2 (4 TP)

Let $\Omega = (-1, 1)$ and $||u||_{H^1(\Omega)} := \sqrt{||u||_{L^2(\Omega)}^2 + ||u'||_{L^2(\Omega)}^2}$ for all $u \in C^1(\Omega)$. Show that

- a) the space $C^0(\overline{\Omega})$ is not complete with respect to $\|\cdot\|_{L^2(\Omega)}$ and
- b) the space $C^1(\overline{\Omega})$ is not complete with respect to $\|\cdot\|_{H^1(\Omega)}$.

Problem 3 (5 TP)

The (nonlinear) Cauchy-Green strain tensor and the linear strain tensor for a smooth displacement vector field $u: \Omega \subset \mathbb{R}^d \to \mathbb{R}^d$ are given by

$$E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \sum_{l=1}^d \frac{\partial u_l}{\partial x_i} \frac{\partial u_l}{\partial x_j} \right), \qquad \mathcal{E}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right).$$

Explain why the resulting displacement of a rigid body motion applied after u is given by $\tilde{u}(x) = A(x + u(x)) - x + c$ for an orthogonal matrix A and a vector c. Show that E is invariant under any rigid body motion while \mathcal{E} is only invariant under translations but not under rotations.

Problem 4 (4 TP)

Let $\langle \cdot, \cdot \rangle_{M_m}$ and $\langle \cdot, \cdot \rangle_{M_n}$ be inner products on \mathbb{R}^m and \mathbb{R}^n induces by s.p.d. matrices $M_m \in \mathbb{R}^{m \times m}$ and $M_n \in \mathbb{R}^{n \times n}$, respectively. Furthermore let $D \in \mathbb{R}^{m \times n}$ and $D^* \in \mathbb{R}^{n \times m}$ the adjoint matrix in the sense that $\langle Dx, y \rangle_{M_m} = \langle x, D^*y \rangle_{M_n}$ for all $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. For $f \in \mathbb{R}^n$ consider the energy functional

$$J(v) = \frac{1}{2} \langle Dv, Dv \rangle_{M_m} - \langle f, v \rangle_{M_n}.$$

a) Show that the minimization problem

$$u \in \mathbb{R}^n$$
: $J(u) \le J(v)$ $\forall v \in \mathbb{R}^n$

is equivalent to the variational equation

$$u \in \mathbb{R}^n$$
: $\langle Du, Dv \rangle_{M_m} = \langle f, v \rangle_{M_n}$ $\forall v \in \mathbb{R}^n$.

b) Show that the variational equation is equivalent to the equation

$$D^*Du = f,$$

give the matrix D^*D , and show that it is symmetric, positive semi-definite.

c) Discuss, in which sense the results are analogues to the results for the membrane deflection problem by relating $\langle \cdot, \cdot \rangle_{M_m}$, $\langle \cdot, \cdot \rangle_{M_n}$, D, D^* , and any of the above problem formulations to their continuous counterpart.

GENERAL REMARKS

You have to do the exercises in groups of up 3 people. Be prepared to demonstrate your solutions to theoretical problems at the given date in the tutorial. Solutions for programming problems have to be submitted via e-mail to adjurdjevac@mi.fu-berlin. de with a subject starting by [NumericsII] and denoting all members of the group. Please follow the additional advise for programming exercises on the homepage.