Fachbereich Mathematik & Informatik Freie Universität Berlin Prof. Dr. Carsten Gräser, Ana Djurdjevac

Exercise 8 for the lecture NUMERICS III SoSe 2018 http://numerik.mi.fu-berlin.de/wiki/SS_2018/NumericsIII.php

Due: Wed, 06-27-2018

Problem 1 (4 TP)

In the lecture, an approximation of the variational problem

$$u \in H_0^1(\Omega)$$
: $a(u, v) = l(v) \quad \forall v \in H_0^1(\Omega)$

was derived by using the finite element space S_h . The resulting variational problem

$$u_h \in S_h : a(u_h, v) = l(v) \quad \forall v \in S_h$$

is rewritten as the linear system of equations

$$AU = b$$

Show that A is positive definite if $a(\cdot, \cdot)$ is elliptic and that symmetry of $a(\cdot, \cdot)$ implies symmetry of A.

Problem 2 (4 TP)

Let us consider the boundary value problem

$$-(p(x)u')' + q(x)u = f(x), \quad x \in (0,1) \qquad (P)$$
$$u(0) = u(1) = 0,$$

where $p, a \in C([0,1])$, $f \in L^2(0,1)$, $p(x) \ge p_0 > 0$, $q(x) \ge 0$. Consider the division of $\overline{\Omega} = [0,1]$ into $N \ge 2$ subintervals $[x_i, \ldots, x_{i+1}]$, $i = 0, \ldots, N - 1$, by the points $x_i = ih, i = 0, \ldots, N$, where h = 1/N. What are the nodal first order finite element basis functions ϕ_i ? What is the support of ϕ_i ?

Furthermore, we define $V_h := span\{\phi_1, \ldots, \phi_{N-1}\}$, which is an (N-1)-dimensional subspace of $H_0^1(0, 1)$. What is the finite element approximation of (P)?

Write the previous variational equation as a finite linear system with a symmetric positive definite matrix A i.e. in the form AU = b.

Calculate the entries of the matrix A explicitly.

Problem 3 (4 TP)

Let $T \subset \mathbb{R}^2$ be a triangle with the vertices $P_i = (x_i, y_i), i = 1, 2, 3$. Compute the affine transformation of the reference triangle T_0 to T, that maps (0,0) to (x_1, y_1) , (1,0) to (x_2, y_2) and (0,1) to (x_3, y_3) . Which geometric property of T is connected to the determinant of the matrix of the transform?

Consider a linear function u_h on the triangle T which at nodes has the given values $u_h(P_i)$. Find the formula for ∇u_h .

GENERAL REMARKS

You have to do the exercises in groups of up 3 people. Be prepared to demonstrate your solutions to theoretical problems at the given date in the tutorial. Solutions for programming problems have to be submitted via e-mail to adjurdjevac@mi.fu-berlin. de with a subject starting by [NumericsIII] and denoting all members of the group. Please follow the additional advise for programming exercises on the homepage.