Fachbereich Mathematik & Informatik

Freie Universität Berlin

Prof. Dr. Carsten Gräser, Lasse Hinrichsen

5. Übung zur Vorlesung

Computerorientierte Mathematik II

SoSe 2020

http://numerik.mi.fu-berlin.de/wiki/SS_2020/CoMaII.php

Abgabe: Fr., 12. Juni 2020, 12:00 Uhr

1. Aufgabe (2 TP)

Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben mit der Eigenschaft

$$|f''(x)| \le M, \quad \forall x \in [x_0, x_1],\tag{1}$$

wobei $x_0, x_1 \in \mathbb{R}$. Ferner sei

$$p_1 \in P_1 = \left\{ v \in C[a, b] \mid v(x) = \sum_{k=0}^{1} a_k x^k, \ a_k \in \mathbb{R} \right\}$$
 (2)

das dazugehörige Interpolationspolynom. Zeigen Sie die folgende Abschätzung:

$$|f(x) - p_1(x)| \le \frac{1}{8}Mh^2,$$
 (3)

wobei $h = x_1 - x_0$.

Hinweis: Schätzen Sie zuerst die Funktion ab:

$$\max_{x_0 \le x \le x_1} |(x - x_0)(x - x_1)|. \tag{4}$$

2. Aufgabe (2 TP + 2 TP)

- a) Zeigen Sie, daß die Newton-Côtes-Formeln für alle $n \in \mathbb{N} \setminus \{0\}$ symmetrisch sind.
- b) Zeigen Sie, daß die Gewichte λ_k der Newton-Côtes-Formeln die Gleichung

$$\sum_{k=0}^{n} \lambda_k = 1, \qquad n \in \mathbb{N} \setminus \{0\},$$

erfüllen.

3. Aufgabe (4 TP)

Die n-te Newton-Côtes-Quadraturformel ist so konstruiert, daß sie für Polynome $p \in P_n$ exakt ist. Zeigen Sie, daß für gerades n sogar Polynome vom Grade n+1 exakt integriert werden.

4. Aufgabe (3 PP + 3 PP)

Wir wollen versuchen, das Integral

$$\int_0^1 e^{-x^2} \, dx$$

numerisch zu approximieren. Dazu unterteilen wir das Intervall [0,1] äquidistant in n Teilintervalle mit den Grenzen $0=x_0 < x_1 < \ldots < x_n=1$ und berechnen die sogenannte Riemann-Summe

$$\int_0^1 f(x) \, dx \approx \sum_{k=1}^n f(\xi_k) (x_k - x_{k-1})$$

mit $\xi_k \in [x_{k-1}, x_k]$. Schreiben Sie ein Python-Programm riemann(I,f,n,q), das diese Riemann-Summe berechnet. Dabei bezeichnet der Vektor I das Integrationsintervall, f die Funktion, n die Anzahl der Teilintervalle und $0 \le q \le 1$ einen Wert, der durch $\xi_k = x_{k-1} + q(x_k - x_{k-1})$ die Lage des Wertes ξ_k festlegt.

Berechnen Sie nun für n = 1, ..., 500 den Fehler der Riemann-Summe, und plotten Sie diesen Fehler in einer logarithmischen Skala gegen n. Werten Sie dazu einmal die Funktion an den Anfangspunkten der Teilintervalle aus (d.h. q = 0), ein anderes Mal an deren Mittelpunkten (d.h. q = 0.5). Vergleichen Sie Ihre Ergebnisse. Was beobachten Sie?

Tipp: Für die Berechnung des Fehlers können Sie 0.5*scipy.special.erf(1)*math.sqrt(math.pi) als Vergleichswert heranziehen.

Allgemeine Hinweise

Die Punkte unterteilen sich in Theoriepunkte (TP) und Programmierpunkte (PP). Bitte beachten Sie die auf der Vorlesungshomepage angegebenen Hinweise zur Bearbeitung und Abgabe der Übungszettel, insbesondere der Programmieraufgaben.