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 SIAM REVIEW (?) 1992 Society for Industrial and Applied Mathematics
 Vol. 34, No. 4, pp. 581-613, December 1992 003

 ITERATIVE METHODS
 BY SPACE DECOMPOSITION AND SUBSPACE CORRECTION*

 JINCHAO XUt

 Abstract. The main purpose of this paper is to give a systematic introduction to a number of iterative
 methods for symmetric positive definite problems. Based on results and ideas from various existing works on
 iterative methods, a unified theory for a diverse group of iterative algorithms, such as Jacobi and Gauss-Seidel
 iterations, diagonal preconditioning, domain decomposition methods, multigrid methods, multilevel nodal ba-
 sis preconditioners and hierarchical basis methods, is presented. By using the notions of space decomposition
 and subspace correction, all these algorithms are classified into two groups, namelyparallel subspace correction
 (PSC) and successive subspace correction (SSC) methods. These two types of algorithms are similar in nature
 to the familiar Jacobi and Gauss-Seidel methods, respectively.

 A feature of this framework is that a quite general abstract convergence theory can be established. In
 order to apply the abstract theory to a particular problem, it is only necessary to specify a decomposition
 of the underlying space and the corresponding subspace solvers. For example, subspaces arising from the
 domain decomposition method are associated with subdomains whereas with the multigrid method subspaces
 are provided by multiple "coarser" grids. By estimating only two parameters, optimal convergence estimations
 for a given algorithm can be obtained as a direct consequence of the abstract theory.

 Key words. domain decomposition, Gauss-Seidel, finite elements, hierarchical basis, Jacobi, multigrid,
 Schwarz, space decomposition, strengthened Cauchy-Schwarz inequalities, subspace correction

 AMS(MOS) subject classifications. 65M60, 65N15, 65N30

 1. Introduction. In this paper, we shall discuss iterative algorithms to approximate
 the solution of a linear equation

 (1.1) Au=f,

 where A is a symmetric positive definite (SPD) operator on a finite-dimensional vector
 space V. There exist a large group of algorithms for solving the above problem. Classic
 examples are Gauss-Seidel, Jacobi iterations, and diagonal preconditioning techniques;
 more contemporary algorithms include multigrid and domain decomposition methods.
 The goal of this paper is to present these algorithms in a unified framework.

 The central idea behind our framework is simple. A single step linear iterative
 method that uses an old approximation, uold, of the solution u of (1.1), to produce a

 new approximation, unew, usually consists of three steps:
 (1) Form rold = f - Auold;
 (2) Solve Ae = rold approximately: e = BrOld with B ;zA-1;
 (3) Update Unew = uold + e.

 Clearly the choice of B (an approximate inverse of A) is the core of this type of algorithm.
 The point of our theory is to chose B by solving appropriate subspace problems. The
 subspaces are provided by a decomposition of V:

 V=i

 i=l

 Here Vi are subspaces of V. Assume that Ai: Vi F-+ Vi is a restriction operator of A on
 Vi (see (3.2)); then the above three steps can be carried out on each subspace Vi with
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 582 JINCHAO XU

 B = ;z A-1 for i = 1, 2,... , J. We shall demonstrate how an iterative algorithm can
 be obtained by repeatedly using the above three steps together with a decomposition of
 the space V with proper subspace solvers.
 The general theory developed in this paper is based on numerous papers on multi-

 grid and domain decomposition methods (of the most relevant are Bramble, Pasciak,
 Wang and Xu [13], [14], and Xu [48]). At the end of each section, we shall give brief
 comments on the literature that is directly related to this work. However, no attempt is
 made to give a complete survey on the vast literature in this active research field (the
 author must apologize in advance for the possible omission of references to works which
 may be closely relevant to this paper).

 Our major concern in this paper is in the theoretical aspect of the algorithms and
 little attention is paid on their implementation. Algorithms for nonsymmetric or indef-
 inite problems will not be discussed, but all the algorithms in this paper for symmetric
 positive definite problems can be applied to solving certain nonsymmetric and indefinite
 problems. In this direction, we refer to Cai and Widlund [20], Xu and Cai [54], Xu [48],
 [50], [51], and Bramble, Leyk, and Pasciak [9].
 The remainder of the paper is organized as follows. In ?2, we give a brief discussion

 of self-adjoint operators and the conjugate gradient method. In ?3, we set up a general
 framework for linear iterative methods for symmetric positive definite problems. An
 abstract convergence theory for the algorithms in the framework of ?3 is established in
 ?4. As a preparation for applications of our general theory, ?5 introduces a model finite
 element method. Sections 6 and 7 are devoted to multilevel and domain decomposition
 methods, respectively. Finally the Appendix contains a proof for a multigrid estimate.

 2. Preliminaries. In this paper, two classes of iterative methods for the solution
 of (1.1) will be discussed: the preconditioned conjugate gradient method and the linear
 iterative method of the form

 (2.1) uk+1 = uk + B(f-Auk), k = O, 1, 2, ....

 Some basic algebraic facts concerning the above methods will be discussed in this section.
 The first subsection is devoted to discussions of basic properties of symmetric positive
 definite operators (A and B will both be such operators) and preconditioned conjugate
 gradient methods. The second subsection is concerned with the relationship between
 the construction of a preconditioner and the operator that appears in (2.1).

 We shall first introduce some notation. V is a linear vector space, L(V) is the space
 of all linear operators from V to itself; for a given linear operator A on V, a(A) is the
 spectrum of A, p(A) its spectral radius, Amin (A) and Ama_, (A) its minimum and maximum
 eigenvalues, respectively; (., ) denotes a given inner product on V; its induced norm is
 denoted by 11 11. The letter C or c, with or without subscript, denote generic constants
 that may not be the same at different occurrences. To avoid writing these constants
 repeatedly, we shall use the notation <, > and _. When we write

 xl y, x2 >Y2, and X3=Y3,
 then there exist constants Cl, C2, C3, and C3 such that

 x1 < CilY, x2 > c2y2 and C3X3 < y3 < C3X3.

 Consequently, xl < 1 means that xl < C for some constant C; xl > 1 and xl = 1 are
 understood similarly.
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 ITERATIVE METHODS BY SUBSPACE CORRECTION 583

 2.1. Self-adjoint operators and conjugate gradient methods. Let us first recall the
 definition of self-adjointness. Given A E L(V), the adjoint of A with respect to (., *),
 denoted by At, is the operator satisfying (Au, v) = (u, Atv) for all u, v E V. We say that
 A is self-adjoint with respect to (., ) if At = A and A is symmetric positive definite if
 (Av, v) > 0 for v E V \ {O}, and A is nonnegative if (Av, v) > 0 for v E V.

 An n x n matrix is self-adjoint with respect to the usual Euclidean inner product in
 Rn if and only if it is symmetric. Nevertheless a nonsymmetric matrix can still be self-
 adjoint with certain inner products. For example, if A and B are two symmetric positive
 definite matrices, although BA is not symmetric in general, it is self-adjoint with respect
 to (, )A.

 We shall have many occasions to use the following Cauchy-Schwarz inequality

 (Ru, v) < (Ru, u)2 (Rv, v)2 Vu, v E V,

 where R is any nonnegative self-adjoint operator (with respect to (,*)) on V.
 It is well known that if A E L(V) is SPD with respect to (, *), then all of its eigenval-

 ues are positive and

 (2.2) Amin(A) min (Av, v) Amax (A)= max ('v 2v)

 Furthermore, (A., ) defines another inner product on V, denoted by (, ')A, and its in-
 duced norm is denoted by II IIA

 Throughout the paper, we shall assume the operator A in (1.1) is always SPD with
 certain inner product. For the equation (1.1), one of the most remarkable algorithms
 is the so-called conjugate gradient (CG) method (cf. [27]). Let uk be the kth conjugate
 gradient iteration with the initial guess u?. It is well known that

 Kl. (A) 1)k
 IIU-UkIIA<2 I(A)? IIu-UOIIA,

 where /i(A) = Amax (A)/Amin(A) is the condition number of A. This estimate shows that
 a smaller /i(A) results in a faster convergence, hence the convergence may be improved
 by reducing the condition number. To this end, we introduce another SPD operator B on
 V, self-adjoint with respect to the same inner product as A, and consider the equivalent
 equation

 (2.3) BAu = Bf.

 As we pointed out earlier, BA is still SPD. Hence the CG method can be applied, and the
 resultant algorithm is known as preconditioned conjugate gradient method. The operator
 B here is known as a preconditioner. A good preconditioner should have the properties
 that the action of B is easy to compute and that K.(BA) is smaller than /i(A). For the
 product operator BA, there are two obvious ways to choose the inner products in the
 algorithm, namely (A., ) or (B-1, .). In general, if the action of A is easier to compute
 than that of B-1, we choose (A., .), otherwise (B-1., .). Sometimes B takes the form
 B = SSt for some nonsingular operator S. Since K.(BA) = ,.(StAS), it is more con-
 venient to apply the CG method to (StAS)v = Stf and to recover the solution u by
 u = Sv. In this case StAS is self-adjoint with respect to the (., .).

 The following result is often useful in the estimate of the condition number.
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 584 JINCHAO XU

 LEMMA 2.1. Assume that A and B are both SPD with respect to (,*) and 1Lo and pi
 are two positive constants. The following, which hold for all v E V, are equivalent:

 ,uo(Av, v) < (ABAv, v) < ,ui(Av, v),

 ,uo(Bv, v) < (BABv, v) < ui (Bv, v),

 H-1(Av, V) < (B-1v, V) < p1 l(Av, V),

 H-'(Bv,V) < (A-lV, V) < p 1 (BV, v).

 If any of the above inequalities hold, then r,(BA) < il/ o.
 The proof of this lemma is straightforward by using (2.2) and the observation that

 BA and (AB)-1 are self-adjoint with respect to (A., *) and AB and (BA)-1 are self-
 adjoint with respect to (B-, .).

 2.2. Linear iteration and preconditioning. We note that the core of the iterate
 scheme (2.1) is the operator B. Observe that if B = A-1, one iteration gives the ex-
 act solution. In general, B may be regarded as an approximate inverse of A. We shall
 call B an iterator of the operator A. Note that a sufficient condition for the convergence
 of scheme (2.1) is

 (2.4) p = III - BAIIA < 1.

 In this case Iu - ukIA < pkU - UI IA -O 0 (as k -+ oo). We shall call the above
 defined p the convergence rate of (2.1). Note that the condition (2.4) is also necessary
 for convergence if B is self-adjoint with respect to (, .).

 It is well known that the linear iterations and preconditioners are closed related.
 First of all, a symmetric iterative scheme gives rise to a preconditioner.

 PROPOSITION 2.2. Assume that B is symmetric with respect to the inner product (, *).
 If (2.4) holds, then B is SPD and

 n(BA) < + P.
 ip

 Notice that the convergence rate of the scheme (2.1) is p, but if we use B as a pre-

 conditioner for A, the PCG method converges at a faster rate since

 r, _B - < - 1 1 - __p2
 1(BA)?1 - V +p 1 P

 We conclude that for any symmetric linear iterative scheme (2.1), a preconditioner for
 A can be found and the convergence rate of (2.1) can be accelerated by using the PCG
 method.

 Any preconditioner of A can also be used to construct a linear iterative scheme.
 PROPOSITION 2.3. Assume that B is a preconditioner of A Then the following linear

 iteration

 uk+1 = Uk +wB(f-Auk)

 is convergentfor w E (0, 2/p(BA)), and the optimal convergence rate is attained when w =
 2(Amin (BA) + Amax (BA))-1, which results in an error reduction per iteration of (r (BA) -
 1)/(K(BA) + 1).
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 ITERATIVE METHODS BY SUBSPACE CORRECTION 585

 Bibliographic comments. The CG method was proposed by Hestenes and Stiefel in
 [31]. The discussion of this method can be found in many textbooks such as Golub and

 Van Loan [27] and Hageman and Young [30]. For a history and related literature, see
 Golub and O'Leary [28].

 3. Subspace correction methods based on space decompositions. A general frame-
 work for linear iterative methods will be presented in this section. We shall introduce no-
 tions of space decomposition and subspace correction. By decomposing the whole space
 into a sum of subspaces, an iterative algorithm can be obtained by correcting residues
 in these subspaces. Some well-known algorithms such as Jacobi and Gauss-Seidel iter-
 ations will be derived from the framework as special examples for illustration.

 3.1. Space decomposition and subspace equations. A decomposition of V consists

 of a number of subspaces Vi c V (for 1 < i < J) such that

 J

 (3.1) V = EVi.
 i=1

 Thus, for each v E V, there exist vi E Vi (1 < i < J) such that v = EJ vi. This
 representation of v may not be unique in general.

 For each i, we define Qi, Pi : V F-+ Vi and Ai: Vi F-> Vi by

 (QU, vi) = (u, Vi), (PiU, Vi)A = (U, Vi)A, U E V,I v E Vi,

 and

 (3.2) (Aiui, vi) = (Aui, vi), ui,vi E Vi.

 Qi and Pi are both orthogonal projections and Ai is the restriction of A on Vi and is
 SPD. It follows from the definition that

 (3.3) AiPi = QiA.

 This identity is of fundamental importance and will be used frequently in this paper. A
 consequence of it is that, if u is the solution of (1.1), then

 (3.4) Ajui = fi

 with ui = Piu and fi = Qif. This equation is the restriction of (1.1) to Vi.
 The subspace equation (3.4) will be in general solved approximately. To describe

 this, we introduce, for each i, another SPD operator Ri: Vi F ) Vi that represents an
 approximate inverse of Ai in certain sense. Thus an approximate solution of (3.4) may
 be given by ui = Rifi.

 Example 3.1. Consider the space V = RI and the simplest decomposition:

 n

 (3.5) = Jspan{e'},
 i=l

 where ei is the ith column of the identity matrix. For an SPD matrix A = (aij) E RnRx n

 Ai = aii, Qiy = yiei,

 where yi the ith component Of y E Rn.
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 586 JINCHAO XU

 3.2. PSC: Parallel subspace correction methods. This type of algorithm is similar
 to Jacobi method.

 Basic idea. Let uold be a given approximation of the solution u of (1.1). The accuracy
 of this approximation can be measured by the residual: rold = f - Auold. If rold = 0 or
 very small, we are done. Otherwise, we consider the residual equation:

 Ae = rold.

 Obviously u = Uold + e is the solution of (1.1). Instead we solve the restricted equation
 to each subspace Vi

 Ajej = Qirold.

 As we are only seeking for a correction, we only need to solve this equation approxi-
 mately using the subspace solver Ri described earlier

 ei = RiQir?

 An update of the approximation of u is obtained by

 Unew = Uold

 i=l

 which can be written as

 unew = Uold + B(f - AUold),

 where

 (3.6) B = ZRiQi.
 i=l

 We therefore have the following algorithm.
 ALGORITHM 3.1. Given uo E V, apply the scheme (2.1) with B given by (3.6).
 Example 3.2. With V = RIR and the decomposition given by (3.5), the corresponding

 Algorithm 3.1 is just the Jacobi iterative method.

 It is well known that the Jacobi method is not convergent for all SPD problems;
 hence Algorithm 3.1 is not always convergent. However, the preconditioner obtained
 from this algorithm is of great importance.

 LEMMA 3.1. The operator B given by (3.6) is SPD.
 Proof. The symmetry of B follows from the symmetry of Ri. Now, for any v E V, we

 have

 (Bv, v) = YZ(RiQiv, Qiv) > 0.
 i=1

 If (Bv, v) = 0, we then have Qiv = 0 for all i. Let vi E Vi be such that v = vi, then

 (v, v) = Z(v, vi) = Z(Qiv, vi) = 0.
 i i

 Therefore v = 0 and B is positive definite. [1
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 ITERATIVE METHODS BY SUBSPACE CORRECTION 587

 Preconditioners. By Proposition 2.2 and Lemma 3.1, B can be used as a precondi-
 tioner.

 ALGORITHM 3.2. Apply the CG method to equation (2.3), with B defined by (3.6) as
 a preconditioner.

 Example 3.3. The preconditioner B corresponding to Example 3.1 is

 B = diag(a-l1, a-1,... , an1),

 which is the well-known diagonal preconditioner for the SPD matrix A.

 3.3. SSC: Successive subspace correction methods. This type of algorithm is similar
 to the Gauss-Seidel method.

 Basic algorithm. To improve the PSC method that makes simultaneous correction,
 we here make the correction in one subspace at a time by using the most updated ap-
 proximation of u. More precisely, starting from vo = uold and correcting its residual in
 V1 gives

 v1 = vO + RiQj(f-Av).

 By correcting the new approximation v1 in the next space V2, we get

 v2 = v1 + R2Q2(f-Avl).

 Proceeding this way successively for all Vi leads to the following algorithm.
 ALGORITHM 3.3. Let uo E V be given, and assume that uk E V has been obtained.

 Then uk+l is defined by

 u k+i/J = uk+(i1)/J + RjQj(f - Auk+(i-l)/J)

 fori= 1,...,J.
 Example 3.4. For the decomposition (3.5), Algorithm 3.3 is the Gauss-Seidel itera-

 tion.

 Example 3.5. More generally, decompose RI as

 J

 Rn= Espan{e1i, ei+1., e1i+1
 i=o

 where 1 = 1 < 11 < ... < 1J+j = n + 1. Then Algorithms 3.1, 3.2, and 3.3 are the
 block Jacobi method, block diagonal preconditioner, and block Gauss-Seidel method,
 respectively.

 Error equations. Let Ti = RjQjA. By (3.3), Ti = RiAiPi. Note that Ti: V | + Vi is
 symmetric with respect to (., *)A and nonnegative and that Ti = Pi if Ri = A-1.

 If u is the exact solution of (1.1), then f = Au. By definition,

 U-uk+i/J = (I -T)(U - Uk+(i-1)/J) i = 1, ... , J.

 A successive application of this identity yields

 (3.7) u - uk+l = Ej(U - Uk),

 where

 (3.8) EJ = (I-TJ)(I-TJ-1) ... (I-T1).
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 588 JINCHAO XU

 There is also a symmetrized version of Algorithm 3.3.

 ALGORITHM 3.4. Let uo E V be given and assume that uk E V has been obtained.
 Then uk+l is defined by

 uk+i/(2J) - Uk+(i 1)/(2J) + RjQj(f - Auk+(i-l)/(2J))

 fori=1,2,...,J, and

 uk+(J+i)/(2J) = uk+(J+i-1)/(2J) + Rj-i+iQj-i+l (f - Auk+(J+il)/(2J))

 fori=1,2,...,J.
 The advantage of the symmetrized algorithm is that it can be used as a precondi-

 tioner. In fact, Algorithm 3.4 can be formulated in the form of (2.1) with operator B
 defined as follows: For f E V, let Bf = ul with ul obtained by Algorithm 3.4 applied
 to (1.1) with u? = 0.

 For Algorithm 3.4, we have u - uk+l = EJ(u - uk) with

 Es = (I -T1)(I -T2) k(I TA)(I -TJ)I- TJ-1) .. J(I - TO)

 Remark 3.1. We observe that EJ = E*Ej(E* is the adjoint of Ej with respect to
 (, * and EJ is symmetric with respect to (, )A. Therefore, IIE9IIA = IIEj II, and
 thus there is no qualitative difference in the convergence properties of Algorithms 3.3
 and 3.4.

 Let us introduce a relaxation method similar to Young's SOR method.
 ALGORITHM 3.5. Let uo E V be given, and assume that uk E V has been obtained.

 Then uk+l is defined by

 uk+i/J = Uk+(i1)/IJ + wRiQi(f - Auk+(i-)/J)

 fori = 1,... , J.
 With V = IRn and the decomposition given by (3.5), the above algorithm is the SOR

 method. As in the SOR method, a proper choice of w can result in an improvement of the
 convergence rate, but it is not easy to find an optimal w in general. The above algorithm
 is essentially the same as Algorithm 3.3 since we can absorb the relaxation parameter w

 into the definition of Ri.

 3.4. Multilevel methods. Multilevel algorithms are based on a nested sequence of
 subspaces:

 (3.9) M1CM2C***CMJ=V.

 Corresponding to these spaces, we define Qk, Pk : MJ -+ Mk as the orthogonal pro-
 jections with respect to (,*) and (', ')A, respectively, and define Ak: Mk F-+ Mk by
 (AkUk, Vk) = (Uk, Vk)A for Uk, Vk E Mk.

 In a multilevel algorithm, an iterator of A is obtained by constructing iterators Bk
 of Ak for all k recursively. A basic algorithm is as follows.

 ALGORITHM 3.6. Let B, = A1- and assume that Bk-i: Mkl I ) Mk-, has been
 defined; then for g E Mk, Bk: Mk F-+ Mk is defined as follows:

 Step 1. v1 = Bk-lQk-19;
 Step 2. Bkg = v1 + Rk(g - AkV1).
 In the definition of this algorithm, we often call Step 1 correction (on the coarse

 space) and Step 2 the smoothing. The operator Rk is often called a smoother. This
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 ITERATIVE METHODS BY SUBSPACE CORRECTION 589

 operator should have the property that Rk(g -AkV) has small components on high
 frequencies of Ak, which are the eigenvectors with respect to the large eigenvalues. The
 main idea in this type of algorithm is to use the coarser spaces to correct lower frequen-
 cies, which are the eigenvectors with respect to smaller eigenvalues, and then to use Rk
 to damp out the high frequencies.

 It is straightforward to show that

 (3.10) Ek I - BkAk = (I - RkAk)(I - Bk-lAk-lPk-l),

 or

 Ek = (I- RkAk)(I - Pk-1 + Ek_lPk_l).

 Although this type of identity has been used effectively in previous work on the conver-
 gence properties of multigrid methods, cf. Maitre and Musy [34], Bramble and Pasciak
 [10] and Xu [49], it will not be used in this paper.

 Relationship with SSC methods. Although Algorithm 3.6 and the SSC algorithm look

 quite different, they are closely related.
 To understand the relationship between the multilevel and SSC algorithms, we look

 a recurrence relation for I - BkAkPk (instead of I - BkAk). Multiplying both sides of

 (3.10) by Pk and using the fact that Pk-lPk = Pk-,, we get

 I - fk k = (I - RkAkPk)(I - BklAklPkl)

 Since Pj = I, a successive application of the above identity yields

 (3.11) I-BjAj= (I-TJ)(I-TJ-1)..(I-TO,

 where

 T, = Pi I Ti = RiAiPi, i = 2, 3, ... ., J.

 The identity (3.11) establishes the following proposition.
 PROPOSITION 3.2. The multilevelAlgorithm 3.6 is equivalent to the SSCAlgorithm 3.3

 with Vi = Mi.
 Now we look at these algorithms from an opposite viewpoint. Suppose we are given

 a space decomposition of V as in (3.1). Then the most naive way to construct a nested
 sequence of multilevel subspaces is

 k

 (3.12) Mk= Vi, k = 1,2, ... , J,
 i=l

 which obviously satisfies (3.9).
 PROPOSITION 3.3. Algorithm 3.3 is equivalent to the multilevelAlgorithm 3.6 with the

 multilevel subspaces defined by (3.12) and the smoothing operator given by

 Rk RkQk.

 Proof. As Vk C Mk, we have QkQk = Qk. Hence

 Tk = RkQkA = RkQkQkA = RkQkA = Tk.
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 590 JINCHAO XU

 This shows that EJ = I - BJAJ and the two algorithms are equivalent. [1
 Let us now give a couple of variants of Algorithm 3.3.

 ALGORITHM 3.7. Let B1 = A1 and assume that Bk-l: Mkl F Mk has been
 defined; then for g E Mk, Bk: Mk F M k is defined by

 Step 1. v1 = Rkg;

 Step 2. Bkg = Vl + Bk-lQk-1(9 - AkV1)
 Comparing this algorithm with Algorithm 3.6, we see that the difference lies in the

 order of smoothing and correction. If we write down the corresponding residual operator
 as for Algorithm 3.6, we immediately obtain the following.

 PROPOSITION 3.4. The residual operator on Mk of Algorithm 3.7 is the adjoint of that
 of Algorithm 3.6.

 We now combine Algorithms 3.6 with 3.7 to obtain the V-cycle algorithm.

 ALGORITHM 3.8. Let B1 = A1 and assume that Bk-i Mkl Mk-, has been
 defined; then for g E Mk, Bk Mk F M k is defined by

 Step 1. v1 = Rkg;
 Step 2. v2 v + Bk-lQk-l(g - Akv);
 Step 3. Bkg = RkQkV2
 The relationship between Algorithms 3.6, 3.7, and 3.8 is described in Proposition

 3.5.
 PROPOSITION 3.5. The residual operator on Mk of Algorithm 3.8 is self-adjoint and it

 is the product of the residual operator ofAlgorithm 3.6 with that ofAlgorithm 3.7. Algorithm
 3.8 is equivalent to SSCAlgorithm 3.4 with the multilevel spaces defined by (3.12) and Rk =
 RkQk.

 Remark 3.2. Because of Propositions 3.4 and 3.5, the convergence estimates of Al-
 gorithm 3.7 and 3.8 are direct consequences of those of Algorithm 3.6. Therefore our
 later convergence analysis will be carried out only for Algorithm 3.6, which also is equiv-
 alent to Algorithm 3.3.

 Bibliographic comments. A classic way of formulating an iterative method is by ma-
 trix splitting; we refer to Varga [46]. The multilevel algorithm (for finite difference equa-
 tions) was developed in the sixties by Fedorenko [26] and Bakhvalov [3]. Extensive re-
 search on this method has been done since the seventies (cf. Brandt [19]). Among the
 vast multigrid literature, we refer to the book by Hackbusch [29] and the book edited
 by McCormick [36] (which contains a list of over six hundred papers on multigrid). For
 a rather complete theoretical analysis of multilevel algorithms, we refer to the author's
 thesis [49]. The formulation of the multigrid algorithm in terms of operators Bk was first
 introduced by Bramble and Pasciak [10].

 The connection of the multigrid algorithm with the SSC type algorithm has been
 discussed by McCormick and Ruge [39]. Algorithm 3.3 was formulated by Bramble,
 Pasciak, Wang, and Xu [13] and Proposition 3.8 can also be found there. The result in
 Proposition 3.3 seems new and it particularly reveals that the so-called FAC method (cf.
 [38]) is equivalent to the classic multigrid algorithm with smoothing done only in the
 refined region (cf. [53]).

 4. Convergence theory. The purpose of this section is to establish an abstract theory
 for algorithms described in previous sections. For reasons mentioned in Remarks 3.1
 and 3.2, it suffices to study Algorithms 3.2 and 3.3. Two fundamental theorems will be
 presented.
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 ITERATIVE METHODS BY SUBSPACE CORRECTION 591

 For Algorithm 3.2, we need to estimate the condition number of

 J

 T = BA = ETi,

 where B is defined by (3.6) and Ti = RiAiPi.
 For Algorithm 3.3, we need to establish the contraction property: there exists a

 constant 0 < 6 < 1 such that

 IIEJIIA < 6 with IIEJIIA = sup IIEjvIIA
 VEV IlVIlA

 where EJ is given by (3.8), or equivalently,

 (4.1) IIVI12 < 1 (Ilvll| - |A EjvjII) Vv E V.

 Applying this estimate to (3.7) yields IIu - uk IA < 6' ||U - u||IA.
 The estimates of K(BA) and IIEj IIA are mainly in terms of two parameters, Ko and

 K1, defined as follows.

 1. For any v E V, there exists a decomposition v = EJ1 Vi for vi E Vi such that

 J

 (4.2) (RT-1vi, vi) < Ko(Av, v).
 i=l

 2. For anyS c {1,2,...J} x {1,2,....J} and ui,vi E Vfori = 1,2,..., J,

 (4.3) E (TiUi, TjVj)A < K1 (?(Tiui, Ui)A) (1(TjVjiVj)A).
 (i,j)ES

 4.1. Fundamental theorems. Our first fundamental theorem is an estimate of the
 condition number of BA.

 THEOREM 4.1 (Fundamental Theorem I). Assume that B is the SSC preconditioner
 given by (3.6); then

 K(BA) < KOK,.

 Proof. We prove that

 (4.4) Amax (BA) < K1,

 and

 (4.5) Amin(BA) > K6-1.

 It follows directly from the definition of K1 that

 J

 IITv12 = E (TV, TjV)A < Kl(TV,v)A < KlIlTvIIAIIVIIA,
 i,j=l

 which implies (4.4).
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 592 JINCHAO XU

 If v = EJ1 Vi is a decomposition that satisfies (4.2), then

 J J

 (V, V)A = (Vi, V)A = (Vi, PiV)A,
 i=1 i=1

 and by the Cauchy-Schwarz inequality,

 J J J

 Z(Vi, PiV)A = Z(Vi, AiPiv) < (Rv-li, vi) 2 (RiAiPiv, V)2
 i=1 i=1 i=1

 1 1 _ (E(R-lvi , vi)) (J (Tiv7 v) A < ||v" | |1A (TV,v)2A
 Consequently,

 llvll' < KO(Tv, V)A,

 which implies (4.5). O
 As a consequence of (4.4), we have

 COROLLARY 4.2. A sufficient condition forAlgorithm 3.1 to be convergent is that

 K1 <2.

 Remark 4.3. If Ko is the smallest constant satisfying the inequality (4.2), then

 Amin(BA) =K-1.

 In fact, for the trivial decomposition v = v1i with vi = TiT1v,

 K0J ?(R-lTiT1lv, TiTlv) = (T1v, )A V A min(BA))
 VEV (v,v)AVE

 This together with (4.5) justifies our claim.
 To present our next theorem, let us first prove a very simple but important lemma.
 LEMMA 4.3. Denote, for 1 < i < J, E = (I-Ti)(I-Ti-1) ... (I-Ti) and Eo = .

 Then

 (4.6) I - E= ET3Ej-1,
 j=1

 J

 (4.7) (2 - w1) E(TiEiv, Ei_lv)A < i|VI12 - IIEjvII2 Vv E V.
 i=1

 Proof. Equation (4.6) follows immediately from the trivial identity Ei-1 - =
 TiEi-1. From this identity, we further deduce that

 IIE~i_vII - IIE~IIA = IITiE_i,vI12 + 2(TiEi-lv, EiV)A
 = (TiEi_lv, TiEi_lV)A + 2(Ti(I - Ti)Ei-lv, Ei-lV)A

 = ((2I - Ti)TiEilv, Ei_lv)A > (2 - wl)(TiEi_lv, Ei_lv)A.
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 ITERATIVE METHODS BY SUBSPACE CORRECnION 593

 Summing up these inequalities with respect to i gives (4.7). 0
 Now we are in a position to present our second fundamental theorem.
 THEOREM 4.4 (Fundamental Theorem II). ForAlgorithm 3.3,

 (4.8) IIEjII~ ? 1 - Ko(1 + K1)2

 where w1 = maxe'(RiAi).
 Proof. In view of (4.1), (4.5), and (4.7), it suffices to show that

 J J

 (4.9) Z(Tiv, V)A ? (1 + K1)2 Z(TzEi_jv, Ei-lv)A VV E V.
 i=1 i=1

 By (4.6)

 (TMv, V)A = (T1v, Eilv)A + (Tiv, (I - Ei1)v)A
 i-l

 = (TiV, Ei_lv)A + Z(Tiv, TjEj_lv)A.
 j=1

 Applying the Cauchy-Schwarz inequality gives

 E(TiV, Ei-1V)A < E(TiV, VA) j(TiEi_1V, Ei_lV)A)
 i=l i=l i=l

 By the definition of K1 in (4.3), we have

 J i-1 J ~~~~ ~~~2 / \2

 EE(TiV, TjEj-1V)A < Kj j(Tiv, V)A) | (Tj Ej 1V7 Ej_1V)A)
 i=l j=l i=l \j=l

 Combining these three formulae then leads to (4.9). 0
 This theorem shows that the SSC algorithm converges as long as w, < 2. The con-

 dition that w1 < 2 is reminiscent of the restriction on the relaxation parameter in the
 SOR method. Since SOR (or block SOR) is a special SSC method, Theorem 4.4 gives
 another proof of its convergence for any symmetric positive definite system (and more
 details for this application will be given later).

 4.2. On the estimate of Ko and K1. Our fundamental theorems depend only on
 three parameters: w1, Ko and K1. Obviously there is little we can say about w1. We shall
 now discuss techniques for estimating Ko and K1.

 We first state a simple result for the estimate of Ko.

 LEMMA 4.5. Assume that, for any v E V, there is a decomposition v = vJ 1 Vi with
 vi E Vi satisfying

 J J

 (vi, Vi)A < CO(V, V)A, or ZAi(vi, vi) < CO(V, V)A,
 i=l1=

 where Ai = p(Ai); then Ko < Co/wo or Ko < Co/W'o where

 wo = min Amin(RiAi) and iZio = mm (AiAmin(Ri)).
 1<i<J 1<i<J
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 594 JINCHAO XU

 The proof of the above lemma is straightforward.

 We now turn to the estimate of K1. For this purpose, we introduce a nonnegative
 symmetric matrix E = (Eij) E IRJX J where fij is the smallest constant satisfying

 1 1

 (4.10) (TiU,TjV)A < wEij (Tiu,u)A(Tjv,v)I Vu,v E V.

 Clearly Eij < 1 and, Eij = 0 if PiPj = 0. If Eij < 1, the above inequality is often known
 as the strengthened Cauchy-Schwarz inequality.

 LEMMA 4.6.

 K1 < w1p(E).

 If Eij < -yli-iI for some -y E (0,1), then p(E) < (1 - )1 and K1 < w(1 - -y) 1.In
 general, p(g) < J and K1 < w1J.

 Proof. Since E is symmetric, the estimate K1 < w1p(E) follows by definition. The

 other estimates follow from the inequality p(E) < maxl<j<j zf1 i= ?
 We shall now estimate K1 in terms of E in a more precise fashion. To this end, we

 define, for a given subset Jo c {1, ... ., J}

 Y0 = IJol, ?o = max E1 j.

 Here 1IJo I denotes the number of elements in Jo.
 LEMMA 4.7.

 K1< w1(-yo+oo).

 Proof. Let

 si= s n (Jo x Jo), S12 = s n (Jo x joc),

 S21= S n (joc x jo), S22 = s n (jc x joc).
 Using (4.10), it is elementary to show that

 /~~~~~~~~

 (4.11) (TiUi, TjVj)A1 wo2 Z(TiUi, Ui)A Z (TjVj, Vj)A,
 (i,j)ES11 iE,Jo jEjo

 /~~~~~~~~

 (4.12) (Tiui,Tjvj)A1 < W0o2 Z (Tiui,u )A Z (TjVj,Vj)A.
 (i,j)ES22 i E,7c iEJ>oc

 Now, for any i E Jo, let Joc (i) = {j E Joc : (i, j) E S12}. Then

 (( , SlTiui7 jujA) = ( ( Tiui jE~ Tvjj))

 2 2

 (TiUi,TjVjI)A Tjv ?vo (zu,z) Tjvj
 (i,j)ES12 iEJo iEJo jE(i) A

 < -Y0 U,1 <liiI Tj <Wl-O 1:(TiUi, UiA ;E Tj Vj
 iEJo jEJo(i) A iE*1o jE*1o(i) A
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 ITERATIVE METHODS BY SUBSPACE CORRECIION 595

 Similar to (4.12), for each i, we have

 2

 TJvj ?W< l 7oZ (TjVj,Vj)A
 jE Jc (i) A jEJo

 Consequently, we have shown that

 ( \ \2(TiUi,TjVj)A < w2yooo Z (TiUi,ui)A Z (TjVj,Vj)AA
 (i,j)ES12 iEJo jEJoc

 Similarly

 (E(TiUi, TjVj) A)< W27oUo E] (Ti Ui, Ui) A L (Tj Vj X Vj)A.
 (i,j)ES2 L iE,Jg jEJo

 As S = Sll U S12 U S21 U S22, the desired estimate follows by some elementary manip-
 ulations. O

 4.3. A quantitative estimate for Gauss-Seidel iteration. As a demonstration of the
 abstract theory developed in this section, we shall now apply Theorem 6.10 to get a quan-
 titative estimate of the convergence factor for Gauss-Seidel method for general symmet-
 ric positive definite algebraic systems.

 Let A = (aij) E 1Rnxn be a given SPD matrix. By Example 3.3, the Gauss-Seidel
 iteration for the system Ax = b is just Algorithm 3.3 with respect to the decomposition
 (3.5). It is straightforward to see that the corresponding constant Ko is given by

 Ko = p(DA-1) = 1/Amin(D-1A),

 where D is the diagonal matrix of A and the corresponding matrix E is given by

 -ij = laij I

 If we denote IAI = (Iaij 1), we then have

 K1 < p(E) = Amax(D-1AI).

 An application of the Fundamental Theorem II then gives an estimate of the conver-
 gence factor, p, of Gauss-Seidel method as follows:

 (4.13) p2 < 1 - Amin(D-1A)
 (1 + Amax(D-1 IAI))2

 A more careful analysis by following the proof of Theorem 4.3 yields a slightly sharper
 estimate:

 Amin(D-1A) =1 Amin(D-1A)
 (1 + )p(D1LDU))2 (1 + ID-112LD-112 1112)2

 where L and U are the lower and upper triangular parts of A, respectively.
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 596 JINCHAO XU

 4.4. Algorithms for linear algebraic systems. All algorithms in the preceding sec-
 tion have been presented in terms of projections and operators in abstract vector spaces.
 In this section, we shall translate all these algorithms into explicit algebraic forms.

 Assume that V and W are two vector spaces and A E L(V, W). By convention,
 the matrix representation of A with respect to a basis (0i,... , /n) of V and a basis

 (1/iX .. . X /)m) of W is the matrix A E I[mx n satisfying

 (AO, I... I AO,) = (bI... I4'm)A.

 Given any v E V, there exists a unique vi = (vi) E aRn such that

 n

 V = Evii.
 i=l

 The vector v can be regarded as the matrix representation of v, denoted by v = v6.
 By definition, we have, for any two operators A, B and a vector v

 (4.14) AB = AB and Av = Av.

 Under the basis (0k), we define the following two matrices

 M = ((Xi, j))nxn and A = ((A4i, Oi))n xn

 We shall call M and A to be the mass matrix and stiffness matrix, respectively. It can be
 easily shown that

 A=MA.

 and that M is the matrix representation of the operator defined by

 n

 (4.15) Rv = (v,5 i)qi Vv E V.
 i=l

 Under a given basis (k), equation (1.1) can be transformed to an algebraic system

 (4.16) AH = q.

 Similar to (2.1), a linear iterative method for (4.16) can be written as

 (4.17) lk+1 =kB + (Ti- A,ok) k=O,1,2,....

 where B E Rnfxfn is an iterator of the matrix A.

 PROPOSITION 4.8. Assume that u = IL, f = 3, and Ti = M:3. Then u is the solution
 of (1.1) if and only if IL is the solution of (4.16). The linear iterations (2.1) and (4.17) are
 equivalent if and only if B = BM. In this case K (BA) = K(BA).

 In the following, we shall call B the algebraic representation of B.
 Using the property of the operator defined by (4.15), we can show Proposition 4.9.
 PROPOSITION 4.9. The scheme (2.1) represents the Richardson iteration for (4.16) if B

 is given by

 n

 Bv = wp(A)-1 Z(v, q5)qi Vv E V,
 i=1
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 ITERATIVE METHODS BY SUBSPACE CORRECMION 597

 and it represents the damped Jacobi iteration if B is given by

 n

 Bv = w ,a-1(v,q5i)q0i lv E V.
 i=1

 The Gauss-Seidel method is a little more complicated. There is no compact form for
 the expression of B.

 PROPOSITION 4.10. The iteration (2.1) represents the symmetric Gauss-Seidel iteration

 for (4.16) if B is defined as follows: for any v E V, Bv = w2n, where

 wi wi-1 + (As/) ,) )1(v -Aw'- ?> )i

 for i = 1, 2, ..., n with w= O, and

 w nj= Wnji + (Afn_j+1, On-j+1)-1(v - AWn+ijl, n+1)knj+1

 forj = 1,2, ..., m Furthermore, B = (D-U)-1D(D-LC)-1M.
 We are now in a position to derive the algebraic representation of the PSC precon-

 ditioner and SSC iterative algorithm. For each k, we assume that (ok , ... ., ok ) is a basis
 of Vk. Since Vk c V, there exists a unique matrix 'k E lRnfXfnk such that

 1?l v?nk) = (017v ...? n)Ek

 Assume that Ik: Vk -+ V is the inclusion operator; then Ik = 'k. The matrix 'k will
 play a key role in the algebraic formulations of our algorithms.

 It is easy to see that the matrix representation of the projection Qk is given by

 (4.18) Qk = Mk VkM7

 where Mk is the mass matrix under the basis (q5).
 To derive the algebraic representation of the preconditioner (3.6), we rewrite it in a

 slightly different form:

 J

 B = ZIkRkQk.
 k=1

 Applying (4.14) and (4.18) gives

 J J

 B = Z IkRkQk = Z k (1zkMk)(Mk1kM) S BM.
 k=1 k=1

 Here lZk is the algebraic representation of Rk and

 J

 (4.19) B = E ZTkIRkZk4
 k=1

 Different choices of Rk yield the following three main different preconditioners:

 ZEJ=1 p(Ak) tk2k Richardson;

 -Ek=l jk E\lk Jacobi;

 I Zk=1 Ikgk2k Gauss-Seidel.
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 598 JINCHAO XU

 Here gk = (E)k -Uk) E) 2k(Ek-Ck) 1 Ak = E)k -k -Uk, 2Dk is the diagonal of Ak,
 -k and -Uk are, respectively, the lower and upper triangular parts of Ak.

 Following Proposition 4.8, we get Proposition 4.11.

 PROPOSITION 4.11. The PSCpreconditionerfor the stiffness matrix A is given by (4.19)
 and K(BA) = K(BA).

 Similarly, we can derive the algebraic representation of Algorithm 3.3 for solving
 (4.16).

 ALGORITHM 4.1. IaO E Rn is given. Assume that L1k E Rn is obtained. Then ,1k+1 iS
 defined by

 ,k+i/J - Ik+(i-1)/J + ?iRIt(ri _ A,uk+(i-1)/J)

 fori = 1,... , J.

 Bibliographic comments. The estimate (4.5) originates from a result in Lions [33]

 who proved that Amin(BA) > Ko-1 in the special case that R-1 = Ai and J = 2. An
 extension of the result to general J is contained in Dryja and Widlund [22].

 The theory presented in ?4.1 stems from [13], [14], but is given in an improved form.
 The introduction of the parameter K1 greatly simplifies the theory.

 Lemma 4.7 is inspired by a similar result in [14].

 5. Finite element equations. In the following sections, we shall give some exam-

 ples of iterative methods for the solution of discretized partial differential equations to
 demonstrate our unified theory developed in previous sections. This section is devoted
 to some basic properties of finite element spaces and finite element equations.

 We consider the boundary-value problem:

 (5.1) -V * aVU = F in Q,
 U = O on aQ,

 where Q c Rd is a polyhedral domain and a is a smooth function on Q with a positive
 lower bound.

 Let H1 (Q) be the standard Sobolev space consisting of square integrable functions

 with square integrable (weak) derivatives of first order, and Ho (Q) the subspace of
 H1 (Q) consisting of functions that vanish on aQ. Then U E Ho' (Q) is the solution of
 (5.1) if and only if

 (5.2) a(U,X) = (F,x) Vx E N01(Q),

 where

 a(U, X) = aVU * VXdx, (F, X) = FXdx.

 Assume that Q is triangulated with Q = Uiri, where ri's are nonoverlapping sim-
 plexes of size h, with h E (0, 1] and quasi uniform; i.e., there exist constants Co and C,
 not depending on h such that each simplex -ri is contained in (contains) a ball of radius
 C1h (respectively, Coh). Define

 V = {v E HNO'(Q) vIT E P1(-ri) V-ri},

 where PT is the space of linear polynomials.
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 ITERATIVE METHODS BY SUBSPACE CORRECIION 599

 We shall now mention some properties of the finite element space. For any v E V,
 we have

 (5.3) IIVIILOO(Q) < hd/PIIv|ILp(Q), P ? 1,
 (5.4) IIVIIH1(Q) < h-lllvll,
 (5.5) |IIO()< Cd(h) ||V||H1(Q)7

 wherecl(h) = 1,c2(h) = logh I andCd(h) = h(2-d)/2ford > 3. The inverse
 inequalities (5.3) and (5.4) can be found, for example, in Ciarlet [21] and a proof of the
 discrete Sobolev inequality (5.5) can be found in Bramble and Xu [17].

 Defining the L2 projection Qh: L2(2Q) F- V by

 (QhV, X) = (V, X) Vv E L2(Q),yX E V,

 we have

 (5.6) liv-QhvII ?hIIQhvIIHl(Q) < ChllvllHl()I.
 This estimate is well known; we refer to [17], [49], [50] for a rigorous proof and related
 results.

 The finite element approximation to the solution of (4.1) is the function u E V
 satisfying

 (5.7) a(u, v) = (F, v) Vv E V.

 Define a linear operator A: V F-+ V by

 (Au, v) = a(u, v), u,v E V.

 The equation (5.7) is then equivalent to (1.1) with f = QhF. It is easy to see that
 p(A) = h-2. The space V has a natural (nodal) basis {q51}=L (n = dimV) satisfying

 )i(xl) = bil Vi,I = 1, ... , n,

 where {xl : 1 = 1, . .. , n} is the set of all interior nodal points of V. By means of these
 nodal basis functions, the solution of (5.7) is reduced to solving an algebraic system (4.16)

 with A = ((aV4i, V00))n n and 71 = ((f, knxi 1)
 It is well known that

 (5.8) hdIVI2 < vtAv < hd-2VII2 and hdIVI2 < vtMv < hdIV12 VV ERn.

 Hence K(A) < h-2 and K(M) < 1.
 Now we define R: V F-+ V by

 n n

 (5.9) Rv = wh2-d Z(v,0i)ki or Rv =wE(aV0j,V0i)-1(v,0i)i
 i=1 i=1

 Then we have, with Ah = p(A),

 (5.10) (Rv, v) = Ah-'(v, v).
 In fact, using the techniques in ?4.4, it is easy to see that this is equivalent to VtM2V ,
 hdvtMv, which is a direct consequence of the second estimate of (5.8).
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 600 JINCHAO XU

 A similar argument shows that, for any given wi E (0, 2), there exists a constant
 co > 0 such that if 0 < w < c0

 (5.11) A' (v,v) < (Rv,v) < w A-' (v,v) Vv E V.

 The operator R given by (5.9) corresponds to Richardson iteration or damped Jacobi
 iteration. Similar result also holds for Gauss-Seidel iteration.

 Bibliographic comments. For general introduction to finite element methods, see
 Ciarlet [21]. A presentation of finite element spaces for multigrid analysis can be found
 in Xu [49]. The discrete Sobolev inequality given in (5.5) for d = 2 has appeared in many
 papers; the earliest reference appears to be Bramble [8].

 6. Multilevel methods. From the space decomposition point of view, a multigrid
 algorithm is built upon the subspaces that are defined on a nested sequence of triangu-
 lations.

 We assume that the triangulation T is constructed by a successive refinement pro-

 cess. More precisely, T = Tj for some J > 1, and Tk for k < J are a nested sequence of
 quasi-uniform triangulations; i.e., Tk consist of simplexes Tk = {rki} of size hk such that
 Q = Uirk for which the quasi-uniformity constants are independent of k (cf. [21]) and
 rk-1 is a union of simplexes of {-rk}. We further assume that there is a constant -y < 1,

 independent of k, such that hk is proportional to y2k.
 As an example, in the two-dimensional case, a finer grid is obtained by connecting

 the midpoints of the edges of the triangles of the coarser grid, with Tf being the given
 coarsest initial triangulation, which is quasi uniform. In this example, -y = 1/X.

 Corresponding to each triangulation Tk, a finite element space Mk can be defined
 by

 Mk = {v E Ho(Q) vl, E Pl(r) Vr E Tk}-

 Obviously, the inclusion relation in (3.9) is satisfied for these spaces.
 We assume that h = hj is sufficiently small and h1 is of unit size. Note that J =

 0(1 log hl). For each k, we define the interpolant Ik C(QC ) F Mk by

 (Iku)(x) = u(x) VX E Kk

 Here KVk is the set of all nodes in Tk. By the discrete Sobolev inequalities (5.5), it can be
 easily shown that

 (6.1) (1k - Ik_1)VII2 + h2IIkvI|2A < cd(k)hk2IIvIA, v E V,

 where cd(k) = 1, J - k and 2(d-2)(J-k) for d = 1, 2 and d > 3, respectively.

 6.1. Strengthened Cauchy-Schwarz inequalities. These types of inequalities were
 used as assumptions in ?4 (see (4.10)). Here we shall establish them for multilevel spaces.

 LEMMA 6.1. Let i < j; then

 a(u, v) < ty h3 |U||V| u E Mi,v E Mj.

 Here, we recall, that -y E (0, 1) is a constant such that hi =y
 Proof. It suffices to show that for any K E Ti,
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 ITERATIVE METHODS BY SUBSPACE CORRECIION 601

 since, by the Cauchy-Schwarz inequality, this implies

 a(u, v) = ZKEcT fK aVu * Vv < 1y3 h7 EK IIUIIH1(K)IIVIIL2(K)

 < ^/ h; ( 1 IIUIIH1(K)W (HK IIVIIL2(K)) =- Y-h-1 IJUIIA IVii.
 KE Ti KETi

 Given v E M3, let v1 E V be the unique function that vanishes on aK and equals to v
 at the interior nodes in K. Set vo = v - v1; then a(u, v) = a(u, vi) + a(u, vo). Since
 Au = 0 on K, an application of Green's formula then gives

 I aVu * Vvl = -| Vu)vl < IIUIIH1 (K) IIV1 IIL2 (K)

 K~~ K
 < a.j iyhj l11jU||H1(K)|lV11L2(K)-

 Let T = {i-E Tj : f naK $& 0}; then supp vo c T and ITI = (=ih)d-lhd - h4-lhj.
 Since Vu is constant on K, we have

 1IVu1IL2(T 11V112 (K) I (< h 11V) IL2(K) 7y 11j IIUIIH1(K)

 For the contributions from vo, we have

 IIVVOII2(T) < hd2 E v2(x) = hd2 E v2(X) < h2 IIVIIL2(K)
 xEAj nOK xEAj nOK

 The estimate (6.2) follows. O

 LEMMA 6.2. Let Vi = (I - Ii1)V or Vi = (Qi - Qi-1)V; then

 (6.3) a(u,v) < -y'ij|IUIIAIIVIIA Vu E Vi,v E Vj.

 Proof. By (6.1) or (5.6), we have

 llvll < hilIVIIA VV E V.

 The result then follows directly from Lemma 6.1. 0
 LEMMA 6.3. Assume that Tk = RkAkPk and that Rk: Mk 1 Mk satisfies

 (6.4) IIRkAkV 112 < A-' (Akv,v) Vv E Mk,

 where Ak = p(Ak). Then, if i < j

 (ui,TjV)A < Yi IjUijIAIIVIIA VUi E Vi,V E V.

 Ingeneral,for 1 < i,j < J,

 (TiU, TjV)A < YII 2/2(Tiu,U)2(Tjv, v) 2 VU7 v E V.
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 602 JINCHAO XU

 Proof An application of Lemma 6.1 yields

 (Ui, TjV)A < 'Y ;-i h,_ 11Ui11IA11ITjV11.

 By (6.4)

 IITjvll = IIRjAjPjvll < hjlIIAPjvll < hjIIVIIA.

 This proves the first inequality.

 The second inequality follows from the Cauchy-Schwarz inequality and the inequal-
 ity just proved:

 (Tiu, TjV)A < (Tjv, v) (TjTiu, Tiu)
 1 1 1

 < y(i i)/2(Tjv, v) IITzuIIA < (i )/2(Tiu,u)A(Tjv,v)A. O

 6.2. Hierarchical basis methods. With the multilevel spaces Mk (1 < k < J) de-

 fined earlier, the hierarchical basis method is based on the decomposition of V into sub-
 spaces given by

 (6.5) Vk = (Ik -Ik-1)M = (I-Ik-l)Mk for k = 1, 2, ..., J.

 Here Io = 0 and Ik: M F-+ Mk is the nodal value interpolant. It is not hard to see

 that (3.1) holds and is a direct sum. In fact, for any v E V, we have the following unique
 decomposition

 (6.6) V= Vk with vk = (Ik-Ik1)v.
 k=1

 With the subspaces Vk given by (6.5), the operators Ak are all well conditioned. In

 fact, by (6.1) and (5.4), we can see that hj2 liv21II = a(v, v) for all v E Vk.
 We assume that Rk satisfies

 (6.7) A 2IIVII2 < (RkAkV,V)A < Wl(V,V)A VV E Vk.

 The Richardson, Jacobi, and Gauss-Seidel iterations all satisfy this inequality.
 LEMMA 6.4.

 Ko<cd and K1<1,

 where c1 = 1, C2 = J2 and Cd = 2(d-2)J ford > 3.
 Proof. For v E V, it follows from (6.6) and (6.1) that

 J

 Zh 2IlVkII2 < Cdc4VI12
 k=1

 This gives the estimate of Ko. The estimate of K1 follows from Lemma 6.2 and
 Lemma 4.6. 0

 Hierarchical basis preconditioner. By using Theorem 4.1 and Lemma 4.5, we obtain
 the following.
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 ITERATIVE METHODS BY SUBSPACE CORRECIION 603

 TIHEOREM 6.5. Assume that Rk satisfies (6.7); then the PSCpreconditioner (3.6), with

 Vk given by (6.5), satisfies

 J 1 if d = 1;

 (6.8) K(BA) < I log hl2 if d = 2;

 1 h2-d if d>3.

 In view of (4.19), the algebraic representation of the PSC preconditioner is

 J

 (6.9) 7 = E Sk'RkSk
 k=1

 where Sk E IRnx(nk-nk-l) is the representation matrix of the nodal basis {q5k} in Mk,

 with xi E AKk \ Ak-l, in terms of the nodal basis {fi} of M. We note that these nodal
 basis functions { xk: Xi E Kk \ Kk-1, k = 1,... , J} form a basis of M, known as the
 hierarchical basis.

 The well-known hierarchical basis preconditioner is a special case of (6.9) with lZk
 given by the Richardson iteration: lZk = h2-dI. In this case

 J

 H= E h dSkSk.
 k=1

 For d = 2, we have H = SSt with S = (S1,S2,... ,Sj). Note that K(-(HA) = (A)
 where A = StAS is just the stiffness matrix under the hierarchical basis (cf. Yserentant
 [56]).

 The estimate of (6.8) shows that the hierarchical basis preconditioner is not very
 efficient when d > 3. A preconditioner that is optimal in any dimensions is presented in
 the next subsection.

 Hierarchical iterative methods. For the SSC iterative method, we apply the Funda-
 mental Theorem II with Lemma 6.4 and get

 THEOREM 6.6. Algorithm 3.3 with the subspaces Vk given by (6.5) satisfies

 IlEj 11 2 < 2 w- A CCd

 provided that Rk's satisfy (6.7) with w, < 2.
 Compared with the usual multigrid method, the smoothing in the SSC hierarchical

 basis method is carried out only on the set of new nodes Krk \Krk-i on each subspace Mk.
 The method proposed by Bank, Dupont, and Yserentant [5] can be viewed as such an
 algorithm with Rk given by an appropriate Gauss-Seidel iterations. Numerical examples
 in [5] show that the SSC algorithm converges much faster than the corresponding SSC
 algorithm.

 6.3. Multigrid algorithms. Let Mk (k = 1,... , J) be the multilevel finite element
 spaces defined as in the preceding section. Again let V = M j, but set Vk = Mk. In this
 case, the decomposition (3.1) is trivial.

 We observe that, with Vk = Mk, there are redundant overlappings in the decompo-
 sition (3.1). The point is that these overlappings can be used advantageously to choose
 the subspace solvers in a simple fashion. Roughly speaking, the subspace solvers need
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 604 JINCHAO XU

 only to take care of those "non-overlapped parts" (which correspond to the so-called
 high frequencies). Technically, the assumption on Rk is

 (6.10) Ak 2IAkVII2 < IIRkAkvII2? <wlAjj1(AkV,V) VV E Mk.

 Note that (6.10) is a consequence of (5.11) and it implies

 (6.11) p(Rk) > A-' and p(RkAk) < w1.

 As we have demonstrated in ?5, all Richardson, damped Jacobi, and symmetric Gauss-
 Seidel iterations satisfy this assumption.

 LEMMA 6.7. For all v E V

 i II(Qk - Qk-1)IIH1 (Q) =: ||V||H1(Q)E k=1

 A proof of this lemma can be found in the Appendix.
 LEMMA 6.8. Under the assumption (6.10)

 Ko < 1 and K1 < 1.

 Proof. By taking vi = (Qi - Qi-l )v and applying Lemma 4.5, Lemma 6.7, and (6.11),

 Ko < 1.

 The estimate for K1 follows from Lemmas 4.6 and 6.3. 0
 Multilevel nodal basis preconditioners. Combining Lemma 6.8 and the first funda-

 mental theorem (Theorem 4.1), we obtain the following.
 THEOREM 6.9. Assume that Rk's satisfy (6.10); then the preconditioner (3.6) satisfies

 K(BA) < 1.

 Again, in view of (4.19), the algebraic representation of preconditioner (4.19) is

 (6.12) k =E k k X
 k=1

 where 'k E IRfXk is the representation matrix of the nodal basis {4i} in Mk in terms
 of the nodal basis {fo} of M, i.e.,

 ,tk = _?1k

 with 4?k = (O,k, . k . ,) and 4D = (01, *, . .
 Note that if we define Ikk+ e ERnk+l Xnk such that

 #?k= =,k+1 k+1
 Thk

 Then
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 ITERATIVE METHODS BY SUBSPACE CORRECIION 605

 This identity is very useful for the efficient implementation of (6.12); cf. Xu and Qin [54].
 If lZk are given by the Richardson iteration, we have

 J

 (6.13) 3 = E hk kItk.
 k=1

 From (6.12) or (6.13), we see that the preconditioner depends entirely on the trans-
 formation between the nodal bases on multilevel spaces. For this reason, we shall call
 such kinds of preconditioners multilevel nodal basis preconditioners.

 Remark 6.1. Observing that Sk in (6.9) is a submatrix of 'k given in (6.12), we then
 have

 (Ha, a) < (Ba, a) Va E IRS

 In view of the above inequality, if we take

 J-1

 H = hkSkSk + I,
 k=1

 we obtain

 (Ha, a) < (Ha, a) < (Ba, a) Va e IR.

 Even though H appears to be a very slight variation of H, numerical experiments have
 shown a great improvement over H for d = 2. We refer to [55] for the numerical results.

 Multigrid iterative algorithms. We now consider Algorithm 3.3 with the multilevel
 subspace described as in the previous subsection. The following result follows directly
 from the Fundamental Theorem II (Theorem 4.4).

 THEOREM 6.10. Assume that the Rk's satisfy (6.10) with w, < 2; then the Algorithm
 3.3 satisfies

 IIEjIIA ?1- 2-Cw

 The algebraic representation of Algorithm 3.3 is just Algorithm 4.1 with 'k defined
 in the previous subsection. As we know that the Algorithm 3.6 is mathematically equiv-
 alent to Algorithm 3.3, but their implementations are different.

 To be more specific in the algebraic representation of Algorithm 3.6, we use the
 symmetric Gauss-Seidel method as the smoother.

 ALGORITHM 6.1 (Algebraic representation of Algorithm 3.6). Let L3 = A11. As-
 sume that 1k-1 E Rnk- 1xnk- 1 is defined; then forr1 e Rnk,, k E Rnk nk is defined as
 follows:

 Step 1. v1 = Sk-1 (3kk1)t7;
 Step 2. Bk?7 = TklV + (Dk-Uk) l k(Vk-?k) 1 -Ak41Vl).
 Let B = Bj, where the action of Bj is computed by Algorithm 6.1, the corresponding

 Algorithm 4.17 is mathematically equivalent to Algorithm 4.1. However, the operation
 counts are slightly different in these two algorithms.

 Remark 6.2. The connection between the equations in terms of operators in finite
 element spaces and the equations in terms of matrices have not been well clarified before.
 Our theory shows that the so-called discrete inner products (often used in early papers
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 606 JINCHAO XU

 for the analysis of multigrid methods) are not necessary either for theoretical analysis or
 for practical implementation.

 In a multigrid algorithm, prolongation and restriction are used to transfer the data
 between a coarser space and a finer space. In our formulation, the prolongation is the
 natural inclusion and the restriction is just the L2 projection. Algebraically, they are just

 Ik and (41)t. By choosing the prolongation and restriction this way and avoiding
 the use of discrete inner products, the theory of the multigrid method is much simplified.

 Remark 6.3. An important feature of Theorem 6.10 is that its proof does not nec-
 essarily depend on much elliptic regularity of the differential equation (5.1). This makes
 it possible to analyze the multigrid algorithm for complicated problems.

 For example, if there are large discontinuity jumps in the coefficient a in (5.1), the
 multigrid convergence could deteriorate because of these jumps. Nevertheless, this pos-
 sible deterioration can be removed by introducing appropriate scaling as in the following
 scaled multilevel nodal basis preconditioner

 J

 B = E hk kk klX
 1=1

 where lHk = diag(ak ak, ... ,ak) and ak is some proper arithmetic average of the
 jumps in a. It can be proved that r' (BA) < Cl log hI1 (independent of the jumps in
 a!) for some f > 0 (for d = 2 and in some cases for d = 3). Similar results also hold
 for V-cycle multigrid method. The proof of such results can be obtained by introducing
 certain weighted L2 inner products and using the theory in this paper. For the discussion
 of the related problems, we refer to [17], [49], [50].

 Another example is on the multigrid algorithms for locally refined meshes. In finite

 element discretizations, meshes are often locally refined to achieve better accuracy. The
 specially designed multigrid algorithms (cf. Brandt [19]) for such problems can be proven
 to be optimal by using the theory in this paper. For the discussion of this matter, we refer
 to [11], [13], [53].

 Bibliographic comments. The strengthened Cauchy-Schwarz inequality appeared
 in Bank and Dupont [4]. It was established for the hierarchical basis preconditioner by
 Yserentant in [56] for two dimensions. The proof of Lemma 6.1 is obtainedby modifying
 a proof of Yserentant [56].

 The idea in hierarchical basis preconditioner for two-dimensional problems can be
 traced back to Bank and Dupont [4] for a two level method. The general multilevel
 hierarchical basis preconditioner was developed by Yserentant in [55]. Similar analysis
 in higher dimensions has been carried out by Ong [40] and Oswald [41]. A study of
 this method from an algebraic point of view is given by Axelsson and Vassilevski in [1],
 [2]. A new version of the algorithm is developed by Bank, Dupont, and Yserentant in
 [5]. The multilevel nodal basis preconditioner was first announced by Bramble and Xu
 in [18] and published in Bramble, Pasciak, and Xu [15] (see also Xu [49]). Uniform
 lower bound for Amin(BA) is obtained in [15], [49] in some special cases. The uniform

 upper bound for Ama,,(BA) has been proved by Zhang [58]. The optimal estimate in
 general case is obtained by Oswald [42], [43]. Lemma 6.7 can be found in [15], [49] in a
 slightly weak form and is implicitly contained in Oswald [43] (where the proof is based
 on Besov spaces). There exist several proofs of Lemma 6.7, cf. Bramble and Pasciak
 [11], Bornemann and Yserentant [7] and the Appendix of this paper.

 The relationship between hierarchical basis and multilevel nodal basis precondition-
 ers was first observed by Xu [49] and also discussed in [55]. For a study along these lines,
 see also Yserentant in [56].
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 ITERATIVE METHODS BY SUBSPACE CORRECTION 607

 Kuo, Chan, and Tong [32] developed some multilevel filtering preconditioners which
 are quite similar to the multilevel nodal basis preconditioners. For a comparison of these
 algorithms (including hierarchical basis method), we refer to Tong, Chan, and Kuo [46].

 For some special cases, Bramble, Pasciak, Wang, and Xu [13] observed that the dis-
 crete L2 inner product in the multigrid algorithm is unnecessary. The conclusion in this
 paper is general.

 Analysis of multigrid algorithms without use of elliptic regularity has been carried
 out by Bramble et al. [13], but the estimates of this paper are better and optimal. Similar
 results have also been obtained by Bramble and Pasciak [11].

 7. Domain decomposition methods. The finite element space V is defined on a tri-

 angulation of the domain Q, hence a finite element space restricted to a subdomain of Q
 can naturally be regarded as a subspace of V. Therefore a decomposition of the domain
 then naturally leads to a decomposition of the finite element space. This is the main
 viewpoint on the algorithms described in this section.

 7.1. Preliminaries. We start by assuming that we are given a set of overlapping sub-

 domains {IQi } of Q whose boundaries align with the mesh triangulation defining V.
 One way of defining the subdomains and the associated partition is by starting with dis-

 joint open sets {JQ}91~ with Q - Ut 109 and {JQ}91~ quasi-uniform of size ho. The
 subdomain Qi is defined to be a mesh subdomain containing Q9 with the distance from
 dQi n Q to Q9 greater than or equal to cho for some prescribed constant c.

 Based on these subdomains, the subspaces Vi (1 < i < J) are defined by

 Vi = {v E V: v(x) = 0 Vx E Q \ Qi}.

 If the number of subdomains J is too large, the above subspaces are not sufficient to
 produce an optimal algorithms. In regard to this consideration, we introduce a coarse

 finite element subspace Vo c V defined from a quasi-uniform triangulation of Q of size
 ho.

 LEMMA 7.1. For the subspaces Vi (O < i < J), we have

 J

 (7.1) V = EVi.
 i=O

 Furthermore there is a constant Co that is independent of h, ho or J, such that for any

 v E V, there are vi E Vi that satisfy v = EJ vi and

 J

 (7.2) Za(vi, vi) < Coa(v, v).
 i=O

 Proof. The main ingredient of the proof is a partition of unity, {0iJj 1, defined on
 Qsatisfying E J1 i = 1 and, for i = 1, . . ., J,

 SUppGi C Qi u dQ, 0 < ?i < 1, IIVi lIoo,n. < Ch-1

 Here IIO Io,D denotes the L?? norm of a function defined on a subdomain D.
 The construction of such a partition of unity is standard. A partition v =EJ vi

 for vi E Vi can then be obtained with

 vw = Qovr vi = Ih(ii(V-lQOV))v i = 1, .r. a J

 where Ih is the nodal value interpolant on V.
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 608 JINCHAO XU

 For this decomposition, we prove that (7.2) holds. For any r E Th, note that

 10i - Oi,rllL-(,r) < hIlVOi IIL(T <h

 Let w = v - Qov; by the inverse inequality (5.4),

 IViIH1(r) < IAi,TWIH1(r) + AAI'h (9i-i,r)WIH1(r)

 < IWIH1(T) + h1IIIh(Oi - 6i,r)wIIL2(T).

 It can easily be shown that

 IIIh(Oi -i,r)wIIL2(T) < h IIWIIL2(r).

 Consequently

 IViIl2(r) < IWI121W) + IIWI12(r)

 Summing over all r E fhn Qi gives

 HVlH(Q) = IvilH1(fi) <. IWH (Qi) + h 2 |IL2 (Qj)X
 0

 and

 J J 2J 21 Za(vi,Vi vi) < IVI (l(i < I (W1(2 ) + IIWIIL2(Qi))

 < (IV - QOVI2p(Q) + IIV - QOVII2()) 2 < IVIIH1(2 )

 For i = 0, we apply (5.6) and get

 IIVOIIH1(Q) r<% IIVIIH1(Q)-

 The desired result then follows. 0
 LEMMA 7.2.

 Ko < Co/wo and K, < C.

 Proof. The first estimate follows directly from Lemmas 4.5 and 7.1. To prove the
 second estimate, we define

 Zi= { j < J: Qin Qj 0}.

 By the construction of the domain decomposition, there exists a fixed integer no such
 that

 IZil?no Vl1i<J.

 Note that if PiPj $& 0 or Pj Pi $ 0, then j E Zi. An application of Lemma 4.7 (with
 To = {0}) gives K1 < wi(1 + no). 0
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 ITERATIVE METHODS BY SUBSPACE CORRECON 609

 7.2. Domain decomposition methods with overlappings. By Theorem 4.1 and Lem-
 ma 7.2, we get the following theorem.

 THEoREM 7.3. The SSCpreconditioner B given by (3.6) associated with the decompo-
 sition (7.1) satisfies

 K(BA) < .

 The proof of the above theorem follows from Theorem 4.1 and Lemma 7.2.
 Combining Theorem 4.4 with Lemma 7.2, we also obtain the following.
 THEOREM 7.4. The Algorithm 3.3 associated with the decomposition (7.1) satisfies

 (7*3) IlEj112 < 1. _wo(2 - wi)

 where C is a constant independent of the number of subdomains J and the mesh size h.
 We note that in our theory, the subdomain problems do not have to be solved exactly

 and only the spectrum of the inexact solvers matters. In the estimate (7.3), wo should
 not be too small and w1 should stay away from 2. It is easy to see that one iteration of a
 V-cycle multigrid on each subdomain always satisfies this requirement.

 As for the implementation of these domain decomposition methods, the algebraic
 formulations (4.19) and Algorithm 4.1 can be used. For example, if exact solvers are
 used in subspace, the PSC preconditioner is

 13 = E9JiA714t
 i=O

 Here 1i E RfXfl is defined by

 (01v * ni) =(01v * .. * X n)-Ti

 where (44,... , 44k.) is the nodal basis of Vi and (X1, .. . n, ) is the nodal basis of V. Note
 that if i $& 0, the entries of matrix 1i consists of 1 and zero, since {qi,... . } is a subset
 of 1b1,*.., nl

 7.3. Multigrid methods viewed as domain decomposition methods. As we observed
 earlier (see Propositions 3.2 and 3.3), multigrid and domain decomposition methods fit
 in the same mathematical framework. We shall now demonstrate some deeper relation-
 ship between these two algorithms.

 Let Tj be the finest triangulation in the multilevel structure described earlier with
 nodes {xi}jJ1. With such a triangulation, a natural domain decomposition is

 ni

 = ? U Usupp Xi,
 i=1

 where Xi is the nodal basis function in Mj associate with the node xi and Qh (maybe
 empty) is the region where all functions in Mj vanish.

 As in Example 3 of ?3, the corresponding decomposition method without the coarser

 space is exactly the Gauss-Seidel method (see also [13]), which as we know is not very
 efficient (its convergence rate implied by (4.13) is known to be 1 - 0(h2)). The more
 interesting case is when a coarser space is introduced. The choice of such a coarse space
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 is clear here, namely Mj-. There remains to choose a solver for Mj-. To do this,
 we may repeat the above process by using the space MJ-2 as a "coarser" space with the
 supports of the nodal basis function in MJ-1 as a domain decomposition. We continue
 in this way until we reach a coarse space M1 where a direct solver can be used. As a

 result, a multilevel algorithm based on domain decomposition is obtained.
 PROPOSITION 7.5. The recursively defined domain decomposition method described

 above is just a multigrid algorithm with the Gauss-Seidel method as a smootherx
 This conclusion follows from our earlier discussion. Another obvious conclusion is

 that the corresponding additive preconditioner of the above multilevel domain decom-
 positions is just the multilevel nodal basis preconditioner (6.12) choosing lZk as Gauss-
 Seidel iterations. Such an additive multilevel domain decomposition method was also
 discussed by Dryja and Widlund [25] and Zhang [58]; but its close relationship with the
 preconditioner (6.12) was not addressed before.

 Bibliographic comments. The mathematical ideas of domain decomposition meth-
 ods can be traced back to Schwarz [44]. In the context of domain decomposition meth-
 ods, the PSC preconditioner is also known as the additive Schwarz method, whereas the
 SSC Algorithm 3.3 is known as the multiplicative Schwarz method. The additive method
 was studied by Dryja and Widlund [23] and Matsokin and Nepomnyaschikh [36]. The
 proof of Lemma 7.1 is contained in [23]. For multiplicative methods, Lions [34] studied
 this method in a variational setting and established the uniform convergence in the two
 subdomain case. The convergence in multiple subdomain case has been studied by Wid-
 lund and his student Mathew in [35] for some special cases. General optimal estimates
 were established by Bramble et al. [14]. The derivation of the multigrid algorithm from
 the domain decomposition method appears to be new.

 Another important class of domain decomposition method is often known as the

 iterative substructuring method. This type of algorithm uses the non-overlapping domain
 decomposition and also fits into our theory. In this direction, we refer to Bramble, Pas-
 ciak, and Schatz [12], Dryja and Widlund [24], and Smith [45].

 For other domain decomposition like algorithms, we refer to Bank and Rose [6] for
 the marching algorithms.

 Appendix: An equivalent norm in H1. The purpose of this appendix is to present a
 proof for Lemma 6.7.

 The main ingredients in the analysis are the fractional Sobolev spaces

 HoM + 'IT(Q) (m > O, O < a < 1)

 defined by the completion of CO (Q) in the following norm:

 IIVIIHm+-(Q) = ( VItHIm(Z) ? IVIHm+?c(Q))X

 where

 IV12m?)= j lDclv(x) -Dclv(y)I12dx dy. I Hm+a(Q2 1X E IQII Z d+2a J

 The following inverse inequality (cf. [16], [49]) holds:

 (8.1) (IVIIH1+a(Q) < h [0,V1] H1(Q). |IVIIH.(Q) < h. |JvJJ Vv E Mk.

 where of E (?, 2) and s E [O, 1].
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 ITERATIVE METHODS BY SUBSPACE CORRECTION 611

 Let Pk: Ho (Q) F-4 Mk be the H1 projection defined by

 (VPkU,Vvk) = (VU,VVk) VU E Ho(Q),Vk E Mk.

 It follows from the standard finite element approximation theory that

 (8.2) iv-PkvIH1-()< hkVH1(Q) Vv E H0(Q)
 for some constant a E (0, 1] (depending on the domain Q).

 By the definition of Qk and the estimate (5.6), we have

 IlQkVII < IIVII Vv E L2(Q), |lQkVIIH'(Q) < IIVIIH1(Q) Vv E Ho'(Q

 By interpolation, we have (for a E (0, 2))

 (8.3) 11QkV11H?(Q) r< IIVIIH?(Q) Vv E Ho (Q)
 Lemma 6.7 is obviously a consequence of

 PROPOSMON 8.6. Let
 00

 |||m= E 11 Qk -Qk-1) IH'(Q)'
 k=1

 Then IIv IIM is an equivalent norm in H' namely,

 IIVIIM r_ IIVIIH1(Q) Vv E Ho(Q)

 Proof. Let Qk = Qk-Qk-l and vi = (Pi-Pi-i)v. It follows from (8.1), (8.3) and
 (8.2) that

 HIkD IH(Q) r. Sk HI'D -I c- (Q) r< Sk H|V IIc(Q) <% Sk hi2 ||iI(Q)

 Let i A j = min(i, j), we have

 IIvII 00 00 (VQkvi,VQkvj) oo iAj

 | | CV | | MkS (VQkvi) ( VQkv;)
 k=1 i,j=k i,j=1 k=1

 oo iAj 00

 < S ~hEAah?h?IIjJvi11H1I(I)1Vi11H1 (Q) <5E A'jh?hj |Jvi11H1II(Q) IlI vIIH1()
 i,j=1 k=1 i,j=l
 00 00

 < E jaj i IIjViIIH1(Q)IIVjI1H1((Q) < jj IViIIH'(Q) = IIVIIHl(Q).
 i,j=l i=l

 To prove the other inequality, we use the strengthened Cauchy-Schwarz inequality
 and obtain (Lemma 6.1)

 00

 IIVIIH1(Q) = E (VQ(iV VQjv)
 i,j=l

 00 00

 < jj l 1'iViQ1iiH1(Q)iiQiViiH1(Q) < 1j iiQiVii12(Q. O
 i,j=l i=1

 Bibliographic comments. The idea of using Hl -projections together with certain el-
 liptic regularity was first contained in the proof of Lemma 10.3 of [49] but the argument
 here is much sharper. Our proof here resembles a proof in a recent paper by Bramble
 and Pasciak [11].
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