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ITERATIVE METHODS
BY SPACE DECOMPOSITION AND SUBSPACE CORRECTION*

JINCHAO XUt

Abstract. The main purpose of this paper is to give a systematic introduction to a number of iterative
methods for symmetric positive definite problems. Based on results and ideas from various existing works on
iterative methods, a unified theory for a diverse group of iterative algorithms, such as Jacobi and Gauss-Seidel
iterations, diagonal preconditioning, domain decomposition methods, multigrid methods, multilevel nodal ba-
sis preconditioners and hierarchical basis methods, is presented. By using the notions of space decomposition
and subspace correction, all these algorithms are classified into two groups, namely parallel subspace correction
(PSC) and successive subspace correction (SSC) methods. These two types of algorithms are similar in nature
to the familiar Jacobi and Gauss-Seidel methods, respectively.

A feature of this framework is that a quite general abstract convergence theory can be established. In
order to apply the abstract theory to a particular problem, it is only necessary to specify a decomposition
of the underlying space and the corresponding subspace solvers. For example, subspaces arising from the
domain decomposition method are associated with subdomains whereas with the multigrid method subspaces
are provided by multiple “coarser” grids. By estimating only two parameters, optimal convergence estimations
for a given algorithm can be obtained as a direct consequence of the abstract theory.

Key words. domain decomposition, Gauss-Seidel, finite elements, hierarchical basis, Jacobi, multigrid,
Schwarz, space decomposition, strengthened Cauchy-Schwarz inequalities, subspace correction

AMS(MOS) subject classifications. 65M60, 65N15, 65N30

1. Introduction. In this paper, we shall discuss iterative algorithms to approximate
the solution of a linear equation

(1.1) Au = f,

where A is a symmetric positive definite (SPD) operator on a finite-dimensional vector
space V. There exist a large group of algorithms for solving the above problem. Classic
examples are Gauss—-Seidel, Jacobi iterations, and diagonal preconditioning techniques;
more contemporary algorithms include multigrid and domain decomposition methods.
The goal of this paper is to present these algorithms in a unified framework.

The central idea behind our framework is simple. A single step linear iterative
method that uses an old approximation, u, of the solution u of (1.1), to produce a
new approximation, u"", usually consists of three steps:

(1) Form ro¢ = f — Ay°®4;

(2) Solve Ae = r° approximately: é = Br°¢ with B ~ A~!;

(3) Update u™" = v 4 é.

Clearly the choice of B (an approximate inverse of A) is the core of this type of algorithm.
The point of our theory is to chose B by solving appropriate subspace problems. The
subspaces are provided by a decomposition of V:

J
V=) V.
=1

Here V; are subspaces of V. Assume that A; : V; — V) is a restriction operator of A on
V; (see (3.2)); then the above three steps can be carried out on each subspace V; with
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582 JINCHAO XU

B=R;~ A7 fori=1,2,...,J. We shall demonstrate how an iterative algorithm can
be obtained by repeatedly using the above three steps together with a decomposition of
the space V with proper subspace solvers.

The general theory developed in this paper is based on numerous papers on multi-
grid and domain decomposition methods (of the most relevant are Bramble, Pasciak,
Wang and Xu [13], [14], and Xu [48]). At the end of each section, we shall give brief
comments on the literature that is directly related to this work. However, no attempt is
made to give a complete survey on the vast literature in this active research field (the
author must apologize in advance for the possible omission of references to works which
may be closely relevant to this paper).

Our major concern in this paper is in the theoretical aspect of the algorithms and
little attention is paid on their implementation. Algorithms for nonsymmetric or indef-
inite problems will not be discussed, but all the algorithms in this paper for symmetric
positive definite problems can be applied to solving certain nonsymmetric and indefinite
problems. In this direction, we refer to Cai and Widlund [20], Xu and Cai [54], Xu [48],
[50], [51], and Bramble, Leyk, and Pasciak [9].

The remainder of the paper is organized as follows. In §2, we give a brief discussion
of self-adjoint operators and the conjugate gradient method. In §3, we set up a general
framework for linear iterative methods for symmetric positive definite problems. An
abstract convergence theory for the algorithms in the framework of §3 is established in
§4. As a preparation for applications of our general theory, §5 introduces a model finite
element method. Sections 6 and 7 are devoted to multilevel and domain decomposition
methods, respectively. Finally the Appendix contains a proof for a multigrid estimate.

2. Preliminaries. In this paper, two classes of iterative methods for the solution
of (1.1) will be discussed: the preconditioned conjugate gradient method and the linear
iterative method of the form

(2.1) utl =uF L B(f — AW*), k=0,1,2,....

Some basic algebraic facts concerning the above methods will be discussed in this section.
The first subsection is devoted to discussions of basic properties of symmetric positive
definite operators (A and B will both be such operators) and preconditioned conjugate
gradient methods. The second subsection is concerned with the relationship between
the construction of a preconditioner and the operator that appears in (2.1).

We shall first introduce some notation. V is a linear vector space, L(V) is the space
of all linear operators from V to itself; for a given linear operator A on V, o(A) is the
spectrum of A, p(A) its spectral radius, Amin (A) and Apmax(A) its minimum and maximum
eigenvalues, respectively; (-,-) denotes a given inner product on V; its induced norm is
denoted by ||-||. The letter C or ¢, with or without subscript, denote generic constants
that may not be the same at different occurrences. To avoid writing these constants
repeatedly, we shall use the notation <, > and =. When we write

~Y A~

r1 Sy, T22 Y2, and 3 S s,
then there exist constants Cj, ¢z, c3, and Cj such that
z1 < Ciy1, T2 >coy2 and czzr3 < y3 < Cazs.

Consequently, z; < 1 means that z; < C for some constant C; z; 2 landz; = 1are
understood similarly.
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ITERATIVE METHODS BY SUBSPACE CORRECTION 583

2.1. Self-adjoint operators and conjugate gradient methods. Let us first recall the
definition of self-adjointness. Given A € L(V), the adjoint of A with respect to (-, -),
denoted by At, is the operator satisfying (Au, v) = (u, A*v) for all u,v € V. We say that
A is self-adjoint with respect to (-,-) if A* = A and A is symmetric positive definite if
(Av,v) > 0 for v € V \ {0}, and A is nonnegative if (Av,v) > 0 forv € V.

An n x n matrix is self-adjoint with respect to the usual Euclidean inner product in
R™ if and only if it is symmetric. Nevertheless a nonsymmetric matrix can still be self-
adjoint with certain inner products. For example, if A and B are two symmetric positive
definite matrices, although B A is not symmetric in general, it is self-adjoint with respect
to ('! ’)A~

We shall have many occasions to use the following Cauchy-Schwarz inequality

(Ru,v) < (Ru, u)? (Rv, v)? Vu,veV,

where R is any nonnegative self-adjoint operator (with respect to (-,-)) on V.
It is well known that if A € L(V) is SPD with respect to (-, -), then all of its eigenval-
ues are positive and
(Av,v)

2.2 Amin(4) = min -~——=, Amax(4) =
( ) ( ) vEIE{?O} ”vllz &X( )

(Av,v)
max TR
vew\{0} |lv]|

Furthermore, (A-,-) defines another inner product on V, denoted by (-, -) 4, and its in-
duced norm is denoted by ||-|| 4.

Throughout the paper, we shall assume the operator A in (1.1) is always SPD with
certain inner product. For the equation (1.1), one of the most remarkable algorithms
is the so-called conjugate gradient (CG) method (cf. [27]). Let u* be the kth conjugate
gradient iteration with the initial guess u°. It is well known that

k
llu — uglla <2 (—\/__——“':E/;;;i) lw — uoll 4,

where £(A) = Amax(A)/Amin(A) is the condition number of A. This estimate shows that
a smaller x(A) results in a faster convergence, hence the convergence may be improved
by reducing the condition number. To this end, we introduce another SPD operator B on
V, self-adjoint with respect to the same inner product as A, and consider the equivalent
equation

(2.3) BAu = Bf.

As we pointed out earlier, BA is still SPD. Hence the CG method can be applied, and the
resultant algorithm is known as preconditioned conjugate gradient method. The operator
B here is known as a preconditioner. A good preconditioner should have the properties
that the action of B is easy to compute and that x(BA) is smaller than x(A). For the
product operator BA, there are two obvious ways to choose the inner products in the
algorithm, namely (A-,-) or (B~!-,-). In general, if the action of A is easier to compute
than that of B~1, we choose (A-, ), otherwise (B~!-,-). Sometimes B takes the form
B = SSt for some nonsingular operator S. Since x(BA) = k(S*AS), it is more con-
venient to apply the CG method to (StAS)v = S*f and to recover the solution u by
u = Sv. In this case StAS is self-adjoint with respect to the (-, ).
The following result is often useful in the estimate of the condition number.
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584 JINCHAO XU

LEMMA 2.1. Assume that A and B are both SPD with respect to (-, -) and po and
are two positive constants. The following, which hold for all v € V, are equivalent:

1o(Av,v) < (ABAv,v) < p1(Av,v),
wo(Bv,v) < (BABv,v) < py(Bv,v),
p1t(Av,v) < (B71,0) < pgt (Av,v),
p1t(Bu,v) < (A71,0) < pgt(Bo,v).

If any of the above inequalities hold, then k(BA) < p1/po-

The proof of this lemma is straightforward by using (2.2) and the observation that
BA and (AB)! are self-adjoint with respect to (A-,-) and AB and (BA)~! are self-
adjoint with respect to (B-, -).

2.2. Linear iteration and preconditioning. We note that the core of the iterate
scheme (2.1) is the operator B. Observe that if B = A1, one iteration gives the ex-
act solution. In general, B may be regarded as an approximate inverse of A. We shall
call B an iterator of the operator A. Note that a sufficient condition for the convergence
of scheme (2.1) is

(2.4) p=|lI —BA|a <1

In this case ||u —u*||a < p*|lu—u®||la — O (as k — oo0). We shall call the above
defined p the convergence rate of (2.1). Note that the condition (2.4) is also necessary
for convergence if B is self-adjoint with respect to (-, -).

It is well known that the linear iterations and preconditioners are closed related.
First of all, a symmetric iterative scheme gives rise to a preconditioner.

PROPOSITION 2.2. Assume that B is symmetric with respect to the inner product (-, ).
If (2.4) holds, then B is SPD and

1
K(BA) < — 12
1-p
Notice that the convergence rate of the scheme (2.1) is p, but if we use B as a pre-
conditioner for A, the PCG method converges at a faster rate since

VK(BA) — 1 \/1_ I RV

= < pP-
VK(BA) + 1 [ 1o 22 +1 p

We conclude that for any symmetric linear iterative scheme (2.1), a preconditioner for
A can be found and the convergence rate of (2.1) can be accelerated by using the PCG
method.
Any preconditioner of A can also be used to construct a linear iterative scheme.
PROPOSITION 2.3. Assume that B is a preconditioner of A. Then the following linear
iteration

ubt = ok + WwB(f — AuF)

is convergent for w € (0, 2/p(BA)), and the optimal convergence rate is attained when w =
2(Amin (BA) + Amax(BA)) ™Y, which results in an error reduction per iteration of (k(BA) —
1)/(k(BA) + 1).
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ITERATIVE METHODS BY SUBSPACE CORRECTION 585

Bibliographic comments. The CG method was proposed by Hestenes and Stiefel in
[31]. The discussion of this method can be found in many textbooks such as Golub and
Van Loan [27] and Hageman and Young [30]. For a history and related literature, see
Golub and O’Leary [28].

3. Subspace correction methods based on space decompositions. A general frame-
work for linear iterative methods will be presented in this section. We shall introduce no-
tions of space decomposition and subspace correction. By decomposing the whole space
into a sum of subspaces, an iterative algorithm can be obtained by correcting residues
in these subspaces. Some well-known algorithms such as Jacobi and Gauss-Seidel iter-
ations will be derived from the framework as special examples for illustration.

3.1. Space decomposition and subspace equations. A decomposition of V consists
of a number of subspaces V; C V (for 1 < ¢ < J) such that

J

(3.1) v=> V.

=1

Thus, for each v € V, there exist v; € V; (1 < i < J) such that v = }:;;1 v;. This
representation of v may not be unique in general.
For each ¢, we define Q;, P; : V — V; and A4; : V; — V; by

(Qiu,v;) = (u,v;), (Piu,v)a = (u,v)a, u€V,v; €V,
and
(32) (A,;u,', ’Ui) = (Aui,v,-), Ui, V; € Vi.

Q; and P; are both orthogonal projections and A; is the restriction of A on V; and is
SPD. It follows from the definition that

(3‘3) AiPi = QiA'

This identity is of fundamental importance and will be used frequently in this paper. A
consequence of it is that, if  is the solution of (1.1), then

with u; = Pyu and f; = Q;f. This equation is the restriction of (1.1) to V.

The subspace equation (3.4) will be in general solved approximately. To describe
this, we introduce, for each i, another SPD operator R; : V; — V; that represents an
approximate inverse of A; in certain sense. Thus an approximate solution of (3.4) may
be given by 4; = R; f;.

Example 3.1. Consider the space V = R™ and the simplest decomposition:

(3.5) R" = i span{e’},
=1

where € is the ith column of the identity matrix. For an SPD matrix 4 = (a;;) € R»*"
Ai = a4, Qiy = yie’,

where y; the ith component of y € R™.
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586 JINCHAO XU

3.2. PSC: Parallel subspace correction methods. This type of algorithm is similar
to Jacobi method.

Basic idea. Letu® be a given approximation of the solution  of (1.1). The accuracy
of this approximation can be measured by the residual: 7°¢ = f — Aud. If 79 = 0 or
very small, we are done. Otherwise, we consider the residual equation:

Ae = r¢

Obviously u = 4 + e is the solution of (1.1). Instead we solve the restricted equation
to each subspace V;

Aje; = Q.

As we are only seeking for a correction, we only need to solve this equation approxi-
mately using the subspace solver R; described earlier

é = R,Qir™.

An update of the approximation of u is obtained by

J
uY = uold + § :éz
=1

which can be written as
UV = uold + B(f _ Au°ld),
where
J
(3.6) B=> RiQ:
=1

We therefore have the following algorithm.

ALGORITHM 3.1. Given ug € V, apply the scheme (2.1) with B given by (3.6).

Example 3.2. With V = R" and the decomposition given by (3.5), the corresponding
Algorithm 3.1 is just the Jacobi iterative method.

It is well known that the Jacobi method is not convergent for all SPD problems;
hence Algorithm 3.1 is not always convergent. However, the preconditioner obtained
from this algorithm is of great importance.

LEMMA 3.1. The operator B given by (3.6) is SPD.

Proof. The symmetry of B follows from the symmetry of R;. Now, for any v € V, we
have

J
(Bv,v) = ) (RiQiv,Qiv) > 0.

=1

If (Bv,v) = 0, we then have Q;v = 0 for all 5. Let v; € V; be such that v = >; Ui, then
('Ua ’U) = Z(va ’U.,;) = Z(Qi'vy 'Ui) =0.

Therefore v = 0 and B is positive definite. O
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ITERATIVE METHODS BY SUBSPACE CORRECTION 587

Preconditioners. By Proposition 2.2 and Lemma 3.1, B can be used as a precondi-
tioner.

ALGORITHM 3.2. Apply the CG method to equation (2.3), with B defined by (3.6) as
a preconditioner.

Example 3.3. The preconditioner B corresponding to Example 3.1 is

B = diag(a}!, a5, - - -, amn),
which is the well-known diagonal preconditioner for the SPD matrix A.

3.3. SSC: Successive subspace correction methods. This type of algorithm is similar
to the Gauss—Seidel method.

Basic algorithm. To improve the PSC method that makes simultaneous correction,
we here make the correction in one subspace at a time by using the most updated ap-
proximation of u. More precisely, starting from v = 4°¢ and correcting its residual in
V), gives

vl =0 + R1Q1(f — AY°).
By correcting the new approximation v! in the next space V,, we get
v? = 0! + RyQa(f — Av?).

Proceeding this way successively for all V; leads to the following algorithm.
ALGORITHM 3.3. Let u® € V be given, and assume that u* € V has been obtained.
Then u**1 is defined by

uk+i/J - uk+(i—1)/J + RzQz(f _ Auk+(i—1)/J)

fori=1,...,J.

Example 3.4. For the decomposition (3.5), Algorithm 3.3 is the Gauss-Seidel itera-
tion.

Example 3.5. More generally, decompose R™ as

J
R" = Z span{eh,eltl ... el+171},

=0

where 1 = lyg < l; < -+ < lj41 = n+ 1. Then Algorithms 3.1, 3.2, and 3.3 are the
block Jacobi method, block diagonal preconditioner, and block Gauss-Seidel method,
respectively.

Error equations. Let T; = R;Q;A. By (3.3), T; = R;A;P;. Note that T;; : V = V; is
symmetric with respect to (-, -) 4 and nonnegative and that T; = P; if R; = A} .

If u is the exact solution of (1.1), then f = Au. By definition,

w—d T = (- D)D), =1,

A successive application of this identity yields

(3.7) u—uktt = Ej(u—ub),
where
(3.8) E;j=(I-T;)(I-T5-1)...(I-T1).
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588 JINCHAO XU

There is also a symmetrized version of Algorithm 3.3.
~ ALGORITHM 3.4. Let u® € V be given and assume that u* € V has been obtained.
Then u**! is defined by

ukHRT) = R HG=1/(RD) | RO, (f — AuktE=D/()y

fori=1,2,...,J,and

WFHIH/@I) — R IH-D/@I) L R 00 L (f — AgttUFED/(2D))

fori=1,2,...,J.

The advantage of the symmetrized algorithm is that it can be used as a precondi-
tioner. In fact, Algorithm 3.4 can be formulated in the form of (2.1) with operator B
defined as follows: For f € V, let Bf = u! with u! obtained by Algorithm 3.4 applied
to (1.1) withu® =0

For Algorithm 3.4, we have u — u**! = E%(u — u*) with

=U-T)I-T2)--- (I -T5)({ = T5)(I = Ty-1)---(I - T1).

Remark 3.1. We observe that E5 = E3E;(E% is the adjoint of E; with respect to
(-,-)a), and E% is symmetric with respect to (-,-) 4. Therefore, ||[E$||a = | Es||%, and
thus there is no qualitative difference in the convergence properties of Algorithms 3.3
and 3.4.

Let us introduce a relaxation method similar to Young’s SOR method.

ALGORITHM 3.5. Let u® € V be given, and assume that u* € V has been obtained.
Then u*+1 is defined by

ulc+i/J — uk+(i—1)/J +WR/,,Qz(f _ Auk+(i—l)/J)

fori=1,...,J.

With V = IR™ and the decomposition given by (3.5), the above algorithm is the SOR
method. Asin the SOR method, a proper choice of w can result in an improvement of the
convergence rate, but it is not easy to find an optimal w in general. The above algorithm
is essentially the same as Algorithm 3.3 since we can absorb the relaxation parameter w
into the definition of R;.

3.4. Multilevel methods. Multilevel algorithms are based on a nested sequence of
subspaces:

(3.9) MiCcMaC---CM;=V

Corresponding to these spaces, we define Qx, P, : My — M as the orthogonal pro-
jections with respect to (-,-) and (-, -) 4, respectively, and define Ag : My — My by
(Auk, vi) = (uk, vk) a for ug, vk € M.

In a multilevel algorithm, an iterator of A is obtained by constructing iterators By,
of Ay, for all k recursively. A basic algorlthm is as follows.

ALGORITHM 3.6. Let Bl = A1 and assume that Bi,_, : My_1 — My_1 has been
defined; then for g € My, By : My — My is defined as follows:

Step1. o' = Bk le 195

Step 2. Brg = v' + Ry (g — Agv?).

In the definition of this algorithm, we often call Step 1 correction (on the coarse
space) and Step 2 the smoothing. The operator Ry is often called a smoother. This
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ITERATIVE METHODS BY SUBSPACE CORRECTION 589

operator should have the property that Ry(g — Axv') has small components on high
frequencies of Ay, which are the eigenvectors with respect to the large eigenvalues. The
main idea in this type of algorithm is to use the coarser spaces to correct lower frequen-
cies, which are the eigenvectors with respect to smaller eigenvalues, and then to use Ry,
to damp out the high frequencies.

It is straightforward to show that

(3.10) Ey=1-ByAy = (I - ReAr)(I — B_14k_1Pi-1),
or
Ey=(I - ReAr)(I — Picy + Ex_1 Pioy).

Although this type of identity has been used effectively in previous work on the conver-
gence properties of multigrid methods, cf. Maitre and Musy [34], Bramble and Pasciak
[10] and Xu [49], it will not be used in this paper.

Relationship with SSC methods. Although Algorithm 3.6 and the SSC algorithm look
quite different, they are closely related.

To understand the relationship between the multilevel and SSC algorithms, we look
a recurrence relation for I — BkAkPk (1nstead of I — B, Ay). Multiplying both sides of
(3.10) by Pk and using the fact that Pk 1P,c = Pk 1, we get

I — ByApPy = (I — ReApPo)(I — By_1Ay_1Py).
Since P; = I, a successive application of the above identity yields
(3.11) I-BjA;=(I-T))I-Ty_y)---(I-T),
where
Tv="»0, Ti=RAP, i=23,...,J

The identity (3.11) establishes the following proposition.

PROPOSITION 3.2. The multilevel Algorithm 3.6 is equivalent to the SSC Algorithm 3.3
with V; = M.

Now we look at these algorithms from an opposite viewpoint. Suppose we are given
a space decomposition of V as in (3.1). Then the most naive way to construct a nested
sequence of multilevel subspaces is

k
(3.12) M=V,  k=12,...,J

which obviously satisfies (3.9).
PROPOSITION 3.3. Algorithm 3.3 is equivalent to the multilevel Algorithm 3.6 with the
multilevel subspaces defined by (3.12) and the smoothing operator given by

Ry = RiQy.
Proof. As Vi, C M, we have Qka = Q. Hence

T = RiQrA = RQrQrA = RiQrA = Ty
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590 JINCHAO XU

This shows that E; = I — B; A and the two algorithms are equivalent. ]

Let us now give a couple of varlants of Algorithm 3.3.

ALGORITHM 3.7. Let B, = A1 and assume that By,_, : My_1 — My_1 has been
defined, thenforg € My, By : My — My is defined by

Step1. o' = Rk g,

Step2. Brg= vl + By 1Qk 1(g Ak'vl)

Comparing this algorithm with Algorithm 3.6, we see that the difference lies in the
order of smoothing and correction. If we write down the corresponding residual operator
as for Algorithm 3.6, we immediately obtain the following.

PROPOSITION 3.4. The residual operator on My, of Algorithm 3.7 is the adjoint of that
of Algorithm 3.6.

We now combine Algorithms 3. 6 with 3.7 to obtain the V-cycle algorithm.

ALGORITHM 3.8. Let Bl = A7! and assume that By,_; : My_, — My_; has been
defined; then for g € My, By, : My, — M, is defined by

Stepl. o' = ng, R

Step2. v®=v'+ By_ 1Qk 1(g — Axv?);

Step 3. Bkg Rkav

The relationship between Algorithms 3.6, 3.7, and 3.8 is described in Proposition
3.5.

PROPOSITION 3.5. The residual operator on M, of Algorithm 3.8 is self-adjoint and it
is the product of the residual operator of Algorithm 3.6 with that of Algorithm 3.7. Algorithm
3.8 is equivalent to SSC Algorithm 3.4 with the multilevel spaces defined by (3.12) and Ry, =
Ry Q.

Remark 3.2. Because of Propositions 3.4 and 3.5, the convergence estimates of Al-
gorithm 3.7 and 3.8 are direct consequences of those of Algorithm 3.6. Therefore our
later convergence analysis will be carried out only for Algorithm 3.6, which also is equiv-
alent to Algorithm 3.3.

Bibliographic comments. A classic way of formulating an iterative method is by ma-
trix splitting; we refer to Varga [46]. The multilevel algorithm (for finite difference equa-
tions) was developed in the sixties by Fedorenko [26] and Bakhvalov [3]. Extensive re-
search on this method has been done since the seventies (cf. Brandt [19]). Among the
vast multigrid literature, we refer to the book by Hackbusch [29] and the book edited
by McCormick [36] (which contains a list of over six hundred papers on multigrid). For
a rather complete theoretical analysis of multilevel algorithms, we refer to the author’s
thesis [49]. The formulation of the multigrid algorithm in terms of operators By, was first
introduced by Bramble and Pasciak [10].

The connection of the multigrid algorithm with the SSC type algorithm has been
discussed by McCormick and Ruge [39]. Algorithm 3.3 was formulated by Bramble,
Pasciak, Wang, and Xu [13] and Proposition 3.8 can also be found there. The result in
Proposition 3.3 seems new and it particularly reveals that the so-called FAC method (cf.
[38]) is equivalent to the classic multigrid algorithm with smoothing done only in the
refined region (cf. [53]).

4. Convergence theory. The purpose of this section is to establish an abstract theory
for algorithms described in previous sections. For reasons mentioned in Remarks 3.1
and 3.2, it suffices to study Algorithms 3.2 and 3.3. Two fundamental theorems will be
presented.
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ITERATIVE METHODS BY SUBSPACE CORRECTION 591

For Algorithm 3.2, we need to estimate the condition number of

J
T=BA=)_T,
i=1
where B is defined by (3.6) and T; = R; A; P;.
For Algorithm 3.3, we need to establish the contraction property: there exists a
constant 0 < § < 1 such that

. Ejv
|Eslla <6 with |Esfls = sup 122014,
veVY "v”A
where Ej is given by (3.8), or equivalently,
1
(4.1) ol < 7= (llA = 1EsvlG) Yo e .

Applying this estimate to (3.7) yields ||u — u¥||a < 6F|ju — u0||4-

The estimates of k(BA) and || E;|| 4 are mainly in terms of two parameters, K and
K, defined as follows.

1. For any v € V, there exists a decomposition v = Zle v; for v; € V; such that

J
(4.2) > (R 'vi,v;) < Ko(Av,v).

i=1

2. Forany S C {1,2,...J} x {1,2,...J} and u;,v; € Vfori=1,2,...,J,

J % J %
(4.3) Z (Tius, Tjv;)a < K (Z(Tzuzvuz)A) (Z(ijjvvj)fl) :

(i,5)€S i=1 j=1

4.1. Fundamental theorems. Our first fundamental theorem is an estimate of the
condition number of BA.

THEOREM 4.1 (Fundamental Theorem I). Assume that B is the SSC preconditioner
given by (3.6); then

Kk(BA) < KoK.

Proof. We prove that

(4.4) Amax(BA) < K7,
and
(4.5) Amin(BA) > K1

It follows directly from the definition of K that

J
ITol% = Y (Tiv, Tyv)a < Ki(Tv,v)a < Kul|T0l|allo]la,
i,j=1

which implies (4.4).
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Ifv= E;’I=1 v; is a decomposition that satisfies (4.2), then

J J
('U, U)A = Z(via 'U)A = Z(viy Pi'l))A,
=1 i=1

and by the Cauchy-Schwarz inequality,

J J J
Y (i Pv)a = (vi, AiPw) < 3 (R vi,v1)¥ (RiAi P, v}

i=1

J /g 3
< <Z(Ri_lvi7vi)) (Z(Tiva v)A> < \/FO”’U“A(TU’ v)fl
=1 =1

Consequently,
Ilv”124 < KO(TU’U)Aa

which implies (4.5). a
As a consequence of (4.4), we have
COROLLARY 4.2. A sufficient condition for Algorithm 3.1 to be convergent is that

K; <2.

Remark 4.3. If K, is the smallest constant satisfying the inequality (4.2), then
Amin(BA) = K.
In fact, for the trivial decomposition v = Ef:l v; with v; = T, T 1o,

J —1pp—1, -1 -1
KOSmaxzi=1(Ri T.,T v, T;T v)_ a.x(T v,0) 4

— . -1
vev “'1)"124 - EIGV ('U, v)A - ()‘mm(BA)) .

This together with (4.5) justifies our claim.
To present our next theorem, let us first prove a very simple but important lemma.
LEMMA 4.3. Denote,for1 <i < J,E; = (I -T;)(I - T;—1)...(I-Ty) and Ey = L.
Then

(4.6) I-E; =) T,E;_,
j=1
J
(4.7) 2-w)d (TiEi_19,Ei_1v)4 < [[v]|4 — | Ev|% Vo e V.
i=1

Proof. Equation (4.6) follows immediately from the trivial identity E;_; — E; =
T;E;_,. From this identity, we further deduce that

I Ei-1v)l% — |1 Evllh = ITEi—1v]|% + 2(TiEi—1v, Ev) 4
= (TiEi—1v, TiE;_1v)a + 2(T;(I — T;)E;—1v, E;_1v) 4
= (2 -T})T;E;_1v, E;_1v) 4 > (2 — w1)(TiEi—1v, E;_1v) a.
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ITERATIVE METHODS BY SUBSPACE CORRECTION 593

Summing up these inequalities with respect to z gives (4.7). O
Now we are in a position to present our second fundamental theorem.
THEOREM 4.4 (Fundamental Theorem II). For Algorithm 3.3,

2—0)1

2
. E <1-— —
(4 8) “ J“A — 1 KO(]. Kl)z’

where wi = max?(R;A;).
Proof. In view of (4.1), (4.5), and (4.7), it suffices to show that

J J
(4.9) S (T, v)a < 1+ K1)* Y (TiEi1v, EBi1v)a Yo €V.

=1 i=1
By (4.6)

(Tv,v)a = (Tiv, E;_1v)a + (Tiv, (I — E;—1)v)a
i-1

= (va, E'_l'v)A + Z(Tiv, I}Ej_l’v)A.
j=1

Applying the Cauchy-Schwarz inequality gives

J J 2 J 2
> (T, Biqv)a < (Z(Ti'vav)A> (Z(TiEi—lva Ei—l'”)A) :
i=1 i=1

=1

By the definition of K; in (4.3), we have

J oi-1 J v 3
ZZ(TW,TJ’EJ'—W)A <K, (Z(Tivy'v)A) (Z(TjEj—lvij—lv)A) .

i=1 j=1 i=1 j=1

Combining these three formulae then leads to (4.9). O

This theorem shows that the SSC algorithm converges as long as w; < 2. The con-
dition that w; < 2 is reminiscent of the restriction on the relaxation parameter in the
SOR method. Since SOR (or block SOR) is a special SSC method, Theorem 4.4 gives
another proof of its convergence for any symmetric positive definite system (and more
details for this application will be given later).

4.2. On the estimate of K, and K;. Our fundamental theorems depend only on
three parameters: w1, Ko and K;. Obviously there is little we can say about w;. We shall
now discuss techniques for estimating K, and K;.

We first state a simple result for the estimate of K.

LEMMA 4.5. Assume that, for any v € V, there is a decomposition v = ELI v; With
v; € V; satisfying

J J
S (vi,vi)a < Co(v,0)a, or Y Ni(wvi,vi) < Co(v,0)4,
i=1 i=1
where \; = p(A;); then Ko < Co/wo or Ko < Co /i where

wo = min, Amin(RiA;) and @o = 1fsflilélJ()\i)\min(Ri))~
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594 JINCHAO XU

The proof of the above lemma is straightforward.
We now turn to the estimate of K. For this purpose, we introduce a nonnegative
symmetric matrix £ = (¢;;) € R’*” where €;; is the smallest constant satisfying

(4.10) (Tiw, Tyv) 4 < wres; (T, w3 (Tyv,0)% Va,v € V.

Clearly €;; < 1and, ¢;; = 0if P,P; = 0. If ¢;; < 1, the above inequality is often known
as the strengthened Cauchy-Schwarz inequality.
LEMMA 4.6.

Kl S wlp(E).

If e S 491 for some v € (0,1), then p(€) < (1 —v)tand Ky S wi(1 —v)"L.In
general, p(€) < Jand K; < w; J.

Proof. Since £ is symmetric, the estimate K; < w;p(€) follows by definition. The
other estimates follow from the inequality p(€) < max;<;<s Ez.J:l €ij.- O

We shall now estimate K in terms of £ in a more precise fashion. To this end, we
define, for a given subset Jp C {1,...,J},

Yo = |Jol, oo = ?glzajf gzj €ij-
Here | J| denotes the number of elements in ;.
LEMMA 4.7.
K1 < wi(vo + 00).
Proof. Let
S11 =80 (Jo x Jo), S12 =8N (Jo x Ty),

521=Sﬂ(‘70°x‘70), 522=Sﬂ(.75xj(f).
Using (4.10), it is elementary to show that

(4.11) ( > (Tiui,ijj)A) < Wi D (T, ui)a Y (Thv,v5) 4,

(4,5)€S11 i€Jo J€Jo

(4.12) ( Z (Tiui,ijj)A) < wio? Z(Tiui,uz')A Z (Tjvj,v;) 4.

(4,5)€S22 ieJy JjeJg

Now, for any i € Jo, let J5(¢) = {j € J§ : (3,5) € S12}. Then

2 2
( Z (Tiui, Tjvj)a | = Z Tius, Z Tjv;
(i,5)€S12 i€Jo JETE() A

2
> Ty

<wivo ) (Tiui, us)a
je\jﬂ(i) A i€Jo

2

<0 Y 1Tk
i€Jo

> Ty,

JE€To(3)

A
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Similar to (4.12), for each ¢, we have

> T

JETs(3)

2

<wioo Y (Tjv,v;) a-
i€Ts

A

Consequently, we have shown that

2
( > (Tiuz’,ijj)A) <wivoo ¥ (T, ui)a Y (Tjv;,v) a-

(3,7)€S12 i€Jo ieds

Similarly

2
( > (Tiui,ijj)A) <wivoo Y (Tuiyui)a y  (Tjv5,v;) 4.

(3,5)€S21 USVAS J€Jo
As § = 811 U 812 U Sa1 U S, the desired estimate follows by some elementary manip-
ulations. a

4.3. A quantitative estimate for Gauss—Seidel iteration. Asa demonstration of the
abstract theory developed in this section, we shall now apply Theorem 6.10 to get a quan-
titative estimate of the convergence factor for Gauss—Seidel method for general symmet-
ric positive definite algebraic systems.

Let A = (a;;) € R™*" be a given SPD matrix. By Example 3.3, the Gauss—Seidel
iteration for the system Az = b is just Algorithm 3.3 with respect to the decomposition
(3.5). It is straightforward to see that the corresponding constant K, is given by

Ko = P(DA_I) = I/Amin(D_lA),
where D is the diagonal matrix of A and the corresponding matrix £ is given by
e = gl
i — .
If we denote |A| = (|as;|), we then have
K1 < p(€) = Amax(D 71| A]).

An application of the Fundamental Theorem II then gives an estimate of the conver-
gence factor, p, of Gauss—Seidel method as follows:

2 Amin(D71A)
19 P S T d DIADE

A more careful analysis by following the proof of Theorem 4.3 yields a slightly sharper
estimate:

2 Amin(D~1A) Amin(D71A)

<1-— —1_ ,
P = T Ay /oD LD D) (1+ [D-2LD-172|,)

where L and U are the lower and upper triangular parts of A, respectively.
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4.4. Algorithms for linear algebraic systems. All algorithms in the preceding sec-
tion have been presented in terms of projections and operators in abstract vector spaces.
In this section, we shall translate all these algorithms into explicit algebraic forms.

Assume that V and W are two vector spaces and A € L(V,W). By convention,
the matrix representation of A with respect to a basis (¢1,...,¢n) of V and a basis
(¥1,...,%m) of W is the matrix A € R™*" satisfying

(Ad)la oo ’A¢n) = (1/)17 cee "‘pm)"i

Given any v € V), there exists a unique v = (1;) € IR" such that

n
v = Z Vi ;.
i=1

The vector v can be regarded as the matrix representation of v, denoted by v = ¥.
By definition, we have, for any two operators A, B and a vector v

(4.14) AB=AB and Av= Aq.
Under the basis (¢ ), we define the following two matrices

M= ((¢ia¢j))nxn and A= ((A¢i’¢j))n><n~

We shall call M and A to be the mass matrix and stiffness matrix, respectively. It can be
easily shown that

A= MA.

and that M is the matrix representation of the operator defined by

(4.15) Rv = zn:(v, di)p; YveV.

=1
Under a given basis (¢x), equation (1.1) can be transformed to an algebraic system
(4.16) Ap =n.
Similar to (2.1), a linear iterative method for (4.16) can be written as
(4.17) pFtt = y* 4 B(n — Ap®), k=0,1,2,...,

where B € R™*" is an iterator of the matrix A.

PROPOSITION 4.8. Assume that i = p, f = 3, and n = Mp. Then u is the solution
of (1.1) if and only if p is the solution of (4.16). The linear iterations (2.1) and (4.17) are
equivalent if and only if B = BM. In this case k(BA) = k(BA).

In the following, we shall call B the algebraic representation of B.

Using the property of the operator defined by (4.15), we can show Proposition 4.9.

PROPOSITION 4.9. The scheme (2.1) represents the Richardson iteration for (4.16) if B

is given by

Bv=wp(A)7' Y (v,¢)¢: WwEV,

i=1
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and it represents the damped Jacobi iteration if B is given by

n
Bv = wZa;l(v, di)p; Vv e V.

=1

The Gauss—Seidel method is a little more complicated. There is no compact form for
the expression of B.

PROPOSITION 4.10. The iteration (2.1) represents the symmetric Gauss—Seidel iteration
for (4.16) if B is defined as follows: for any v € V, Bv = w?", where

w' = wl + (Adi, ¢:) " (v — Aw' T, 8) s
fori=1,2,...,nwithw®=0,and
W™ = w4 (Adn_jt1, Pnejr1) T — AW b 1) Bn it

forj=1,2,...,n. Furthermore, B = (D —U)~'D(D — L)~ M.

We are now in a position to derive the algebraic representation of the PSC precon-
ditioner and SSC iterative algorithm. For each k, we assume that (¢, .. ., qSﬁk) is a basis
of V. Since Vi C V, there exists a unique matrix Z, € R™*™* such that

(¢va ce ’¢§k) = (¢1v .. ~’¢n)1k-

Assume that I, : Vi, — V is the inclusion operator; then I, = Ii. The matrix Zj, will
play a key role in the algebraic formulations of our algorithms.
It is easy to see that the matrix representation of the projection Q) is given by

(4.18) Qx = M'TiM,

where M, is the mass matrix under the basis (¢¥).
To derive the algebraic representation of the preconditioner (3.6), we rewrite it in a
slightly different form:

J
B=> IRiQ:.

k=1
Applying (4.14) and (4.18) gives
A J
B= ZIkRka = ka(RkMk)(MlzlliM) = BM.
k=1 k=1

Here Ry is the algebraic representation of Ry and

J
(4.19) B= ZIkRkIlf:-

k=1

Different choices of Ry, yield the following three main different preconditioners:
S, p(Ax)"'T4T;  Richardson;
B={ Y _ .01} Jacobi;

21{=1 TGr Ik Gauss-Seidel.

This content downloaded from
87.77.199.229 on Fri, 26 Jun 2020 14:18:47 UTC
All use subject to https://about.jstor.org/terms



598 JINCHAO XU

Here Gy = (Dx — U) "' Di(Dr, — L), Ax = Dr — Ly — U, Dy is the diagonal of Ay,
—L and —U;, are, respectively, the lower and upper triangular parts of Ay.

Following Proposition 4.8, we get Proposition 4.11.

PROPOSITION 4.11. The PSC preconditioner for the stiffness matrix A is given by (4.19)
and k(BA) = k(BA).

Similarly, we can derive the algebraic representation of Algorithm 3.3 for solving
(4.16).

ALGORITHM 4.1. u® € R™ is given. Assume that u* € R™ is obtained. Then p*+1 is
defined by

/l,k+i/J — #k+(i—1)/J +IiRiI:(77 —A}Lk+(i_l)/'])

fori=1,...,J.

Bibliographic comments. The estimate (4.5) originates from a result in Lions [33]
who proved that Amin(BA) > K in the special case that R; ! = A4; and J = 2. An
extension of the result to general J is contained in Dryja and Widlund [22].

The theory presented in §4.1 stems from [13], [14], but is given in an improved form.
The introduction of the parameter K greatly simplifies the theory.

Lemma 4.7 is inspired by a similar result in [14].

5. Finite element equations. In the following sections, we shall give some exam-
ples of iterative methods for the solution of discretized partial differential equations to
demonstrate our unified theory developed in previous sections. This section is devoted
to some basic properties of finite element spaces and finite element equations.

We consider the boundary-value problem:

(5.1) —V-aVU = F inQ,
U=0 ondQ,

where Q C R¢ is a polyhedral domain and a is a smooth function on Q with a positive
lower bound.

Let H(2) be the standard Sobolev space consisting of square integrable functions
with square integrable (weak) derivatives of first order, and Hj(Q) the subspace of
H'(Q) consisting of functions that vanish on 8. Then U € H}(Q) is the solution of
(5.1) if and only if

(5.2) a(U,x) = (F,x) Vx € Hy(®),

where
a(U, x) =/aVU-de:c, (F,X)=/dex.
Q Q

Assume that (2 is triangulated with Q = U;7;, where 7;’s are nonoverlapping sim-
plexes of size h, with h € (0, 1] and quasi uniform; i.e., there exist constants Cy and C;
not depending on & such that each simplex 7; is contained in (contains) a ball of radius
C1h (respectively, Coh). Define

V={veHQ):v| €P(r)Vr},

where P; is the space of linear polynomials.
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We shall now mention some properties of the finite element space. For any v € V,
we have

(5.3) [vllo(@) S B~P0llo), P>1,
(5-4) ol S A7,
(5.5) lvllzeo @) S ca(P)lvllmr (),

where cy(h) = 1,c2(h) = |logh|? and c4(h) = h(2 — d)/2 for d > 3. The inverse
inequalities (5.3) and (5.4) can be found, for example, in Ciarlet [21] and a proof of the
discrete Sobolev inequality (5.5) can be found in Bramble and Xu [17].

Defining the L? projection Qj, : L2(R2) — V by

(Qwv,x) = (v,x) Vv e L*(Q),x €V,
we have
(5.6) lv — Qrvll + AllQrvl 1 () S Chllv|| 1 (0)-

This estimate is well known; we refer to [17], [49], [50] for a rigorous proof and related
results.
The finite element approximation to the solution of (4.1) is the function u € V

satisfying
(5.7) a(u,v) = (F,v) YveV.
Define a linear operator A : V — V by

(Au,v) = a(u,v), u,v € V.

The equation (5.7) is then equivalent to (1.1) with f = QpF. It is easy to see that
p(A) = h—2. The space V has a natural (nodal) basis {¢;}"_; (n = dimV) satisfying
di(z) =6a Vi,l=1,...,n,

where {z; : [ = 1,...,n} is the set of all interior nodal points of V. By means of these
nodal basis functions, the solution of (5.7) is reduced to solving an algebraic system (4.16)

with A = ((av¢i, V¢l))n><n and n= ((f7 ¢i)nX1)’
It is well known that

(58) A2 <vtAv Sh2p)? and A2 SviMe SR Y2 Yr € R™
Hence k(A) < h~2 and k(M) < 1.
Now we define R: V — V by

(59) Rv=wh>*) (v,¢:)¢; or Ruv=w) (aVei, V)" (v,:);.

i=1 i=1
Then we have, with A\, = p(4),
(5.10) (Rv,v) = A5 (v,v).

In fact, using the techniques in §4.4, it is easy to see that this is equivalent to v* M2y =
hévt My, which is a direct consequence of the second estimate of (5.8).
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A similar argument shows that, for any given w; € (0,2), there exists a constant
co > 0suchthatif 0 < w < ¢

(5.11) 2 (v,0) S (Ro,v) <wid;t(v,v) Yo €.

The operator R given by (5.9) corresponds to Richardson iteration or damped Jacobi
iteration. Similar result also holds for Gauss-Seidel iteration.

Bibliographic comments. For general introduction to finite element methods, see
Ciarlet [21]. A presentation of finite element spaces for multigrid analysis can be found
in Xu [49]. The discrete Sobolev inequality given in (5.5) for d = 2 has appeared in many
papers; the earliest reference appears to be Bramble [8].

6. Multilevel methods. From the space decomposition point of view, a multigrid
algorithm is built upon the subspaces that are defined on a nested sequence of triangu-
lations.

We assume that the triangulation 7 is constructed by a successive refinement pro-
cess. More precisely, 7 = 7T for some J > 1, and T for k < J are a nested sequence of
quasi-uniform triangulations; i.e., 7 consist of simplexes 7} = {r}} of size h such that
Q = U;ri for which the quasi-uniformity constants are independent of k (cf. [21]) and
7} _, is a union of simplexes of {7{}. We further assume that there is a constant vy < 1,
independent of k, such that h, is proportional to y2*.

As an example, in the two-dimensional case, a finer grid is obtained by connecting
the midpoints of the edges of the triangles of the coarser grid, with 7; being the given
coarsest initial triangulation, which is quasi uniform. In this example, v = 1/v/2.

Corresponding to each triangulation 7, a finite element space M, can be defined
by

My ={v e H}(Q):v|, €Pi(r) V1€ Tk}

Obviously, the inclusion relation in (3.9) is satisfied for these spaces.
We assume that h = h; is sufficiently small and h; is of unit size. Note that J =
O(|log h|). For each k, we define the interpolant I} : C(2) — M by

(Ixu)(z) = u(z) Vz € Nk

Here N is the set of all nodes in 7. By the discrete Sobolev inequalities (5.5), it can be
easily shown that

(6.1) 1Tk = Te—1)ol® + hEll el S ca(k)BiNvlla, v €V,

where c4(k) = 1,J — k and 2(4-2U k) for d = 1,2 and d > 3, respectively.

6.1. Strengthened Cauchy-Schwarz inequalities. These types of inequalities were
used as assumptions in §4 (see (4.10)). Here we shall establish them for multilevel spaces.
LEMMA 6.1. Let i < j; then

a(u,v) YR ullallvll Ve € Mi,v e M;.

Here, we recall, that y € (0,1) is a constant such that h; = .
Proof. 1t suffices to show that for any K € T;,

(6.2) /K aVu - Vo S Y h: ull g o ol e,
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since, by the Cauchy-Schwarz inequality, this implies

a(u,v) = Y ke, JxaVu - Vo SY TR Y per lullm g vl L2k

Sy (Z uun%mo) (Z |Iv||%z<x>> =407 ol

KeT; KeT;

Given v € Mj, let v; € V be the unique function that vanishes on 0K and equals to v
at the interior nodes in K. Set v = v — vy; then a(u,v) = a(u,v1) + a(u,vp). Since
Awu = 0 on K, an application of Green’s formula then gives

/ aVu-Vv; = —/ (Va - Vu)vy S llullar g llvillzzx)
K K
S YR e o vl ek

LetT = {r € T; : TN 0K # 0}; then supp vo C T and |T| = (’E‘;})d‘lhg = hi~th;.
Since Vu is constant on K, we have

|T|%
K|}

1
hé1p. \ .
IVullz2x) S ( 5 ’) IVullzy S 7 el x)-

IVullL2(ry =

For the contributions from vy, we have

d— d— -
”V'UO“%?(T) Sk 2 Z Ug(m) =h; 2 Z v?(x) S h; 2"7)“%2(1{)‘
zEN;NOK zeN;NOK

The estimate (6.2) follows. o
LEMMA 6.2. Let V; = (Ii — Ii_l)v orV; = (Q, — Q,-_l)v; then

(6.3) a(u,v) SV |ullallvlla Vu € Viv e ;.

Proof. By (6.1) or (5.6), we have
lvll S hillvlla Yo eV.

The result then follows directly from Lemma 6.1. O
LEMMA 6.3. Assume that Ty, = Ry, Ay Py, and that Ry : My, — My, satisfies

(6.4) | R Arv]|? S A (Akv,v) Yo € My,
where A\, = p(Ag). Then, ifi < j

(i, Tjv)a S¥Y " luillallvlla Vs € Vi,v V.
In general, for1 <i,j < J,

(Tiu, Tjv)a S ¥9V2(Tyu, u)%(ij, v)¥ Vu,v e V.
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602 JINCHAO XU
Proof. An application of Lemma 6.1 yields
(ui, Tjv) a S ¥~ hy Hluill all Tyoll-
By (6.4)
IT50ll = 1R AsPyoll S hsll A3 Pyoll S hyllvlla.

This proves the first inequality.
The second inequality follows from the Cauchy—Schwarz inequality and the inequal-
ity just proved:

(Tru, Tyv) 4 < (Tyv, )3 (T Tu, Tru)

<SGy, 0) 4 | Toull 4 S 19~D/2(Tou, u)d (T, )3 0

6.2. Hierarchical basis methods. With the multilevel spaces Mj (1 < k < J) de-
fined earlier, the hierarchical basis method is based on the decomposition of V into sub-
spaces given by

(6.5) Vk = (Ik - Ik_l)M = (I b Ik—l)Mk for k = 1,2, ey J.

Here Iy = 0 and Iy : M +— M is the nodal value interpolant. It is not hard to see
that (3.1) holds and is a direct sum. In fact, for any v € V, we have the following unique
decomposition

J
(6.6) V= Z’Uk with v, = (Ik - Ik_l)'v.
k=1

With the subspaces Vi given by (6.5), the operators Ay, are all well conditioned. In
fact, by (6.1) and (5.4), we can see that h ?||v|| = a(v,v) for all v € Vj.
We assume that Ry, satisfies

(6.7) A;zllvllfq S (RpAkv,v)a < wi(v,v)a Yo € V.

The Richardson, Jacobi, and Gauss—Seidel iterations all satisfy this inequality.
LEMMA 6.4.

KO ,Scd and Kl S 1,

where c; = 1,c; = J? and cq = 2942 ford > 3.
Proof. For v € V), it follows from (6.6) and (6.1) that

J
> hlvell? S callvll3-

k=1

This gives the estimate of Ko. The estimate of K; follows from Lemma 6.2 and
Lemma 4.6. 0

Hierarchical basis preconditioner. By using Theorem 4.1 and Lemma 4.5, we obtain
the following.
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ITERATIVE METHODS BY SUBSPACE CORRECTION 603

THEOREM 6.5. Assume that Ry, satisfies (6.7); then the PSC preconditioner (3.6), with
Vi given by (6.5), satisfies

1 ifd=1;
(6.8) k(BA) S ¢ |loghl|? ifd=2;
24 ifd >3.

In view of (4.19), the algebraic representation of the PSC preconditioner is

J
(6.9) H=> SRSk,
k=1

where S, € R™*("x~™%-1) js the representation matrix of the nodal basis {¢*} in Mj,
with z¥ € N \ Ni_1, in terms of the nodal basis {¢*} of M. We note that these nodal
basis functions {¢¥ : =¥ € Ny \ Nk—1,k = 1,...,J} form a basis of M, known as the
hierarchical basis.

The well-known hierarchical basis preconditioner is a special case of (6.9) with R
given by the Richardson iteration: Ry = hi‘dl' . In this case

J
H=> hi'SS}.
k=1

For d = 2, we have H = SS* with S = (51, Ss,...,Ss). Note that k(HA) = k(A),
where A = St AS is just the stiffness matrix under the hierarchical basis (cf. Yserentant
[56))-

The estimate of (6.8) shows that the hierarchical basis preconditioner is not very
efficient when d > 3. A preconditioner that is optimal in any dimensions is presented in
the next subsection.

Hierarchical iterative methods. For the SSC iterative method, we apply the Funda-
mental Theorem II with Lemma 6.4 and get

THEOREM 6.6. Algorithm 3.3 with the subspaces Vj, given by (6.5) satisfies

2—w1

Ccd

I1EsI% <1-

provided that Ry’s satisfy (6.7) with wy, < 2.

Compared with the usual multigrid method, the smoothing in the SSC hierarchical
basis method is carried out only on the set of new nodes Ny, \ NVj,—1 on each subspace M.
The method proposed by Bank, Dupont, and Yserentant [5] can be viewed as such an
algorithm with Ry, given by an appropriate Gauss-Seidel iterations. Numerical examples
in [5] show that the SSC algorithm converges much faster than the corresponding SSC
algorithm.

6.3. Multigrid algorithms. Let M, (k = 1,...,J) be the multilevel finite element
spaces defined as in the preceding section. Again let V = M, but set Vy = M. In this
case, the decomposition (3.1) is trivial.

We observe that, with Vi, = My, there are redundant overlappings in the decompo-
sition (3.1). The point is that these overlappings can be used advantageously to choose
the subspace solvers in a simple fashion. Roughly speaking, the subspace solvers need
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604 JINCHAO XU

only to take care of those “non-overlapped parts” (which correspond to the so-called
high frequencies). Technically, the assumption on Ry, is

(6.10) Mo 72| Akv]1? S | ReAkv||? € widgH(Agv,v) Yo € My
Note that (6.10) is a consequence of (5.11) and it implies
(6.11) p(Re) 2 A\t and  p(RxAx) < wi.

As we have demonstrated in §5, all Richardson, damped Jacobi, and symmetric Gauss—
Seidel iterations satisfy this assumption.
LEMMA 6.7. Forallv € V

J
> 1@k — Qe-Dli3n () = V113 -
k=1

A proof of this lemma can be found in the Appendix.
LEMMA 6.8. Under the assumption (6.10)

Ko S 1 and Kl ,S 1.
Proof. By taking v; = (Q; —Q;—1)v and applying Lemma 4.5, Lemma 6.7, and (6.11),
Ko< 1.

The estimate for K; follows from Lemmas 4.6 and 6.3. a

Muiltilevel nodal basis preconditioners. Combining Lemma 6.8 and the first funda-
mental theorem (Theorem 4.1), we obtain the following.

THEOREM 6.9. Assume that Ry,’s satisfy (6.10); then the preconditioner (3.6) satisfies

k(BA) < 1.
Again, in view of (4.19), the algebraic representation of preconditioner (4.19) is
J
(6.12) B=> LRiI},
k=1
where Z;, € R™™™ is the representation matrix of the nodal basis {¢¥} in M, in terms
of the nodal basis {¢;} of M, i.e.,
o+ = @7,

with &% = (¢%,..., ¢k ) and ® = (¢1,...,¢n).
Note that if we define Zf 1 € R™+1X™* such that

k k k
F = FHITEHL
Then

_J . Tkt2k+1
Li=T5_ LI,

This content downloaded from
87.77.199.229 on Fri, 26 Jun 2020 14:18:47 UTC
All use subject to https://about.jstor.org/terms



ITERATIVE METHODS BY SUBSPACE CORRECTION 605

This identity is very useful for the efficient implementation of (6.12); cf. Xu and Qin [54].
If Ry, are given by the Richardson iteration, we have

J
(6.13) B=> W LI

k=1

From (6.12) or (6.13), we see that the preconditioner depends entirely on the trans-
formation between the nodal bases on multilevel spaces. For this reason, we shall call
such kinds of preconditioners multilevel nodal basis preconditioners.

Remark 6.1. Observing that Si, in (6.9) is a submatrix of Zj; given in (6.12), we then
have

(Haya) < (Ba,a) Ya € R™

In view of the above inequality, if we take

J—1
H=> i858t +1,
k=1

we obtain
(Ha,a) < (Ho,a) < (Ba,a) Va € R™

Even though H appears to be a very slight variation of H, numerical experiments have
shown a great improvement over H for d = 2. We refer to [55] for the numerical results.
Multigrid iterative algorithms. We now consider Algorithm 3.3 with the multilevel
subspace described as in the previous subsection. The following result follows directly
from the Fundamental Theorem II (Theorem 4.4).
THEOREM 6.10. Assume that the Ry’s satisfy (6.10) with wy < 2; then the Algorithm
3.3 satisfies

2—0)1
c

The algebraic representation of Algorithm 3.3 is just Algorithm 4.1 with Z;, defined
in the previous subsection. As we know that the Algorithm 3.6 is mathematically equiv-
alent to Algorithm 3.3, but their implementations are different.

To be more specific in the algebraic representation of Algorithm 3.6, we use the
symmetric Gauss—-Seidel method as the smoother.

ALGORITHM 6.1 (Algebraic representation of Algorithm 3.6). Let B, = A7, As-
sume that B,_, € R™-1%X"*-1 is defined; then for n € R™, By, € R"*"* is defined as
follows:

Step 1. v' = Bi_1(TF_,)'nm;

Step 2. Bin= I,’:_ll/l + (Dk - uk)‘le(Dk — l:k)_l (1] - AkI,’:_llll).

Let B = B, where the action of B, is computed by Algorithm 6.1, the corresponding
Algorithm 4.17 is mathematically equivalent to Algorithm 4.1. However, the operation
counts are slightly different in these two algorithms.

Remark 6.2. The connection between the equations in terms of operators in finite
element spaces and the equations in terms of matrices have not been well clarified before.
Our theory shows that the so-called discrete inner products (often used in early papers

IEs|% <1-
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606 JINCHAO XU

for the analysis of multigrid methods) are not necessary either for theoretical analysis or
for practical implementation.

In a multigrid algorithm, prolongation and restriction are used to transfer the data
between a coarser space and a finer space. In our formulation, the prolongation is the
natural inclusion and the restriction is just the L? projection. Algebraically, they are just
ZF_, and (I¥_,)*. By choosing the prolongation and restriction this way and avoiding
the use of discrete inner products, the theory of the multigrid method is much simplified.

Remark 6.3. An important feature of Theorem 6.10 is that its proof does not nec-
essarily depend on much elliptic regularity of the differential equation (5.1). This makes
it possible to analyze the multigrid algorithm for complicated problems.

For example, if there are large discontinuity jumps in the coefficient a in (5.1), the
multigrid convergence could deteriorate because of these jumps. Nevertheless, this pos-
sible deterioration can be removed by introducing appropriate scaling as in the following
scaled multilevel nodal basis preconditioner

J
B=> mLiH;'L,
=1

where H, = diag(a¥,af,...,ak ) and ok, is some proper arithmetic average of the
jumps in a. It can be proved that k(BA) < C|logh|? (independent of the jumps in
a!) for some 3 > 0 (for d = 2 and in some cases for d = 3). Similar results also hold
for V-cycle multigrid method. The proof of such results can be obtained by introducing
certain weighted L? inner products and using the theory in this paper. For the discussion
of the related problems, we refer to [17], [49], [50].

Another example is on the multigrid algorithms for locally refined meshes. In finite
element discretizations, meshes are often locally refined to achieve better accuracy. The
specially designed multigrid algorithms (cf. Brandt [19]) for such problems can be proven
to be optimal by using the theory in this paper. For the discussion of this matter, we refer
to [11], [13], [53].

Bibliographic comments. The strengthened Cauchy—Schwarz inequality appeared
in Bank and Dupont [4]. It was established for the hierarchical basis preconditioner by
Yserentant in [56] for two dimensions. The proof of Lemma 6.1 is obtained by modifying
a proof of Yserentant [56].

The idea in hierarchical basis preconditioner for two-dimensional problems can be
traced back to Bank and Dupont [4] for a two level method. The general multilevel
hierarchical basis preconditioner was developed by Yserentant in [55]. Similar analysis
in higher dimensions has been carried out by Ong [40] and Oswald [41]. A study of
this method from an algebraic point of view is given by Axelsson and Vassilevski in [1],
[2]. A new version of the algorithm is developed by Bank, Dupont, and Yserentant in
[5). The multilevel nodal basis preconditioner was first announced by Bramble and Xu
in [18] and published in Bramble, Pasciak, and Xu [15] (see also Xu [49]). Uniform
lower bound for Ap;,(BA) is obtained in [15], [49] in some special cases. The uniform
upper bound for Aj,..(BA) has been proved by Zhang [58]. The optimal estimate in
general case is obtained by Oswald [42], [43]. Lemma 6.7 can be found in [15], [49] in a
slightly weak form and is implicitly contained in Oswald [43] (where the proof is based
on Besov spaces). There exist several proofs of Lemma 6.7, cf. Bramble and Pasciak
[11], Bornemann and Yserentant [7] and the Appendix of this paper.

The relationship between hierarchical basis and multilevel nodal basis precondition-
ers was first observed by Xu [49] and also discussed in [55]. For a study along these lines,
see also Yserentant in [56].
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ITERATIVE METHODS BY SUBSPACE CORRECTION 607

Kuo, Chan, and Tong [32] developed some multilevel filtering preconditioners which
are quite similar to the multilevel nodal basis preconditioners. For a comparison of these
algorithms (including hierarchical basis method), we refer to Tong, Chan, and Kuo [46].

For some special cases, Bramble, Pasciak, Wang, and Xu [13] observed that the dis-
crete L? inner product in the multigrid algorithm is unnecessary. The conclusion in this
paper is general.

Analysis of multigrid algorithms without use of elliptic regularity has been carried
out by Bramble et al. [13], but the estimates of this paper are better and optimal. Similar
results have also been obtained by Bramble and Pasciak [11].

7. Domain decomposition methods. The finite element space V is defined on a tri-
angulation of the domain £, hence a finite element space restricted to a subdomain of 2
can naturally be regarded as a subspace of V. Therefore a decomposition of the domain
then naturally leads to a decomposition of the finite element space. This is the main
viewpoint on the algorithms described in this section.

7.1. Preliminaries. We start by assuming that we are given a set of overlapping sub-
domains {Q;};_; of Q whose boundaries align with the mesh triangulation defining V.
One way of defining the subdomains and the associated partition is by starting with dis-
joint open sets {Q9}); with Q = UL, Q9 and {Q?};_, quasi-uniform of size ho. The
subdomain §2; is defined to be a mesh subdomain containing QY with the distance from
0Q; NN to Q? greater than or equal to chy for some prescribed constant c.

Based on these subdomains, the subspaces V; (1 < i < J) are defined by

Vi={veV:v(z)=0Vz € Q\Q}

If the number of subdomains J is too large, the above subspaces are not sufficient to
produce an optimal algorithms. In regard to this consideration, we introduce a coarse
finite element subspace V, C V defined from a quasi-uniform triangulation of (2 of size
ho.

LEMMA 7.1. For the subspaces V;(0 < i < J), we have

J
(7.1) v=> V.
=0

Furthermore there is a constant C that is independent of h, ho or J, such that for any
v € V, there are v; € V; that satisfy v = Zz.J:O v; and

J
(7.2) Za(vi,vi) < Cpa(v,v).

=0
Proof. The main ingredient of the proof is a partition of unity, {6;};_,, defined on
Q satisfying E;;l 0;=1and,fori=1,...,J,
suppf; C U, 0<6,<1, |Vbillca, <Chy'.

Here ||-||c0,p denotes the L* norm of a function defined on a subdomain D.

The construction of such a partition of unity is standard. A partition v = Z%Lo v;
for v; € V; can then be obtained with

Vo =Q0va Vi =Ih(ei(’U—Q0’U)), 1= la"'aJa

where I}, is the nodal value interpolant on V.
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608 JINCHAO XU

For this decomposition, we prove that (7.2) holds. For any 7 € 7y, note that

~ h
16; — 63,7l oo (r) S RIVO;]| Loory S e
Let w = v — Qov; by the inverse inequality (5.4),

il (ry < 1057wl () + [Ta(0: — 0 2 )wl g (r)
S lwlgiy + B Tn(6: — 8ir)wl L2(ry.-

It can easily be shown that
- h
1 1n(0; — 0i,r)wllL2(r) S h—0||w||L2(r)~
Consequently
foilrsoy S ol + 2wl
VilH1(r) S 1WIH(7) [ WilL2(r)-
Summing over all 7 € T, N Q; gives
1
|vi|%11(a) = |vi|%11(n,.) S |w|%11(9,~) + h_§||w||%2(9‘)’

and

J J J

1
S awin) $ 3 olinay S 3 (le?p(m) n Egnwuizmi))
=1 i=1

=1

S (Iv = Qovlnay + v = Qovll3aqy ) S ol oy
For i = 0, we apply (5.6) and get
lvoll &2 () S Vil e (@)-

The desired result then follows. 0
LEMMA 7.2.

KO < Co/wo and Kl < C.

Proof. The first estimate follows directly from Lemmas 4.5 and 7.1. To prove the
second estimate, we define

Z;={1<j<J:2NQ; #0}.

By the construction of the domain decomposition, there exists a fixed integer ng such
that

|Zi| <mo V1<i<J

Note that if P,P; # 0 or P;P; # 0, then j € Z;. An application of Lemma 4.7 (with
Iy = {O}) giVCS K, < wl(l + ’I’Lo). a

This content downloaded from
87.77.199.229 on Fri, 26 Jun 2020 14:18:47 UTC
All use subject to https://about.jstor.org/terms



ITERATIVE METHODS BY SUBSPACE CORRECTION 609

7.2. Domain decomposition methods with overlappings. By Theorem 4.1 and Lem-
ma 7.2, we get the following theorem.

THEOREM 7.3. The SSC preconditioner B given by (3.6) associated with the decompo-
sition (7.1) satisfies

The proof of the above theorem follows from Theorem 4.1 and Lemma 7.2.
Combining Theorem 4.4 with Lemma 7.2, we also obtain the following.
THEOREM 7.4. The Algorithm 3.3 associated with the decomposition (7.1) satisfies

wo(2 — wi)

C b
where C is a constant independent of the number of subdomains J and the mesh size h.

We note that in our theory, the subdomain problems do not have to be solved exactly
and only the spectrum of the inexact solvers matters. In the estimate (7.3), wo should
not be too small and w; should stay away from 2. It is easy to see that one iteration of a
V-cycle multigrid on each subdomain always satisfies this requirement.

As for the implementation of these domain decomposition methods, the algebraic
formulations (4.19) and Algorithm 4.1 can be used. For example, if exact solvers are
used in subspace, the PSC preconditioner is

(7.3) IEsI% <1 -

J
B=> TA;'I.

=0
Here Z; € R™*™ is defined by
(¢i’ ey ¢:1,) = (¢11 LR ¢n)zi1

where (¢}, ...,#%,) is the nodal basis of V; and (¢1, . . . , ¢») is the nodal basis of V. Note
that if s # 0, the entries of matrix Z; consists of 1 and zero, since {¢}, ..., ¢, } is a subset

of {¢1,. 1¢'n}

7.3. Multigrid methods viewed as domain decomposition methods. Aswe observed
earlier (see Propositions 3.2 and 3.3), multigrid and domain decomposition methods fit
in the same mathematical framework. We shall now demonstrate some deeper relation-
ship between these two algorithms.

Let 7 be the finest triangulation in the multilevel structure described earlier with
nodes {z;}7.7,. With such a triangulation, a natural domain decomposition is

ngy
Q=08 supp 4,
=1

where ¢; is the nodal basis function in M ; associate with the node z; and Qf (maybe
empty) is the region where all functions in M ; vanish.

Asin Example 3 of §3, the corresponding decomposition method without the coarser
space is exactly the Gauss—Seidel method (see also [13]), which as we know is not very
efficient (its convergence rate implied by (4.13) is known to be 1 — O(h?%)). The more
interesting case is when a coarser space is introduced. The choice of such a coarse space
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610 JINCHAO XU

is clear here, namely M ;_;. There remains to choose a solver for M ;_;. To do this,
we may repeat the above process by using the space M j_» as a “coarser” space with the
supports of the nodal basis function in M ;_; as a domain decomposition. We continue
in this way until we reach a coarse space M; where a direct solver can be used. As a
result, a multilevel algorithm based on domain decomposition is obtained.

PROPOSITION 7.5. The recursively defined domain decomposition method described
above is just a multigrid algorithm with the Gauss—Seidel method as a smoother.

This conclusion follows from our earlier discussion. Another obvious conclusion is
that the corresponding additive preconditioner of the above multilevel domain decom-
positions is just the multilevel nodal basis preconditioner (6.12) choosing R, as Gauss—
Seidel iterations. Such an additive multilevel domain decomposition method was also
discussed by Dryja and Widlund [25] and Zhang [58]; but its close relationship with the
preconditioner (6.12) was not addressed before.

Bibliographic comments. The mathematical ideas of domain decomposition meth-
ods can be traced back to Schwarz [44]. In the context of domain decomposition meth-
ods, the PSC preconditioner is also known as the additive Schwarz method, whereas the
SSC Algorithm 3.3 is known as the multiplicative Schwarz method. The additive method
was studied by Dryja and Widlund [23] and Matsokin and Nepomnyaschikh [36]. The
proof of Lemma 7.1 is contained in [23]. For multiplicative methods, Lions [34] studied
this method in a variational setting and established the uniform convergence in the two
subdomain case. The convergence in multiple subdomain case has been studied by Wid-
lund and his student Mathew in [35] for some special cases. General optimal estimates
were established by Bramble et al. [14]. The derivation of the multigrid algorithm from
the domain decomposition method appears to be new.

Another important class of domain decomposition method is often known as the
iterative substructuring method. This type of algorithm uses the non-overlapping domain
decomposition and also fits into our theory. In this direction, we refer to Bramble, Pas-
ciak, and Schatz [12], Dryja and Widlund [24], and Smith [45].

For other domain decomposition like algorithms, we refer to Bank and Rose [6] for
the marching algorithms.

Appendix: An equivalent norm in H'. The purpose of this appendix is to present a
proof for Lemma 6.7.
The main ingredients in the analysis are the fractional Sobolev spaces

HM Q) (m>0,0<o0<1)

defined by the completion of C§°(f?) in the following norm:

2
lollzrmso@) = (I01%m @) + [0fmsem )

where

2 _ |D*v(z) — Dv(y)|?
[olfmee@y = D2 /Q/Q [z — y|&+2o dz dy.

laj=m
The following inverse inequality (cf. [16], [49]) holds:
1) Mol S helollas@,  Iolae S hellbll - Vo € My,

where o € (0, 3) and s € [0, 1].
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ITERATIVE METHODS BY SUBSPACE CORRECTION 611

Let Py, : H}(Q) — M;, be the H! projection defined by
(VPru, Vi) = (Vu, Vo) Vu € HY(Q),vx € M.
It follows from the standard finite element approximation theory that
(8.2) v = Pevllgri-a(a) S hellvllm) Yo € Hy()

for some constant a € (0, 1] (depending on the domain 2).
By the definition of @, and the estimate (5.6), we have

1Qwvll <llvll Vo€ L*(Q), (Qrvllare) S Ilvllm@ Yoe Hy(Q).
By interpolation, we have (for o € (0, 1))

(8.3) 1Qkvll o) S Ivllae(@) Vv € Hy(R).

Lemma 6.7 is obviously a consequence of
PROPOSITION 8.6. Let

o3 = D 1@k — Qr-1)l3rs (q)-

k=1
Then ||v||pr is an equivalent norm in H namely,

Ivllm = lollare) Yo € Hy(Q).
Proof. Let Qr, = Qi — Qi_1 and v; = (P; — P;_1)v. It follows from (8.1), (8.3) and
(8.2) that
||kai||§11(9) S Ag"@k”i"%{l—o(n) S Ag””i”%{l—a(n) < Aﬁhf“llvillﬁ,-l(m.

Let i A j = min(s, j), we have

oo tAJ
o3 = Z Z (V@i VQkvs) = 3 > (VQwvi, VQkv;)
k=11,j=k 1,j=1k=1
oo IAj
S Y0 S arehg vl ey lvsll e ey S Z A b R il ) vl 2 )
1,j=1k=1 3,j=1

o o)
SO Nl ey sl ey S Z il 0y = 01F (o)
i,j=1 i=
To prove the other inequality, we use the strengthened Cauchy-Schwarz inequality
and obtain (Lemma 6.1)

||'U||%{1(Q) = Z (VQiv, VQj'U)

i,j=1
w . . ~ ~ m ~
S Y A NQul @ 1@l ) S D 1QivlI3n o)- a
i,j=1 i=1

Bibliographic comments. The idea of using H!-projections together with certain el-
liptic regularity was first contained in the proof of Lemma 10.3 of [49] but the argument
here is much sharper. Our proof here resembles a proof in a recent paper by Bramble
and Pasciak [11].
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