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Multigrid methods are the fastest known methods for the solution of the
large systems of equations arising from the discretization of partial differ-
ential equations. For self-adjoint and coercive linear elliptic boundary value
problems (with Laplace’s equation and the equations of linear elasticity as two
typical examples), the convergence theory reached a mature, if not its final
state. The present article reviews old and new developments for this type of
equation and describes the recent advances.
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1. Introduction

The discretization of partial differential equations leads to very large systems
of equations. For two-dimensional problems, several ten thousand unknowns
are not unusual, and in three space dimensions, more than one million un-
knowns can be reached very easily. The direct solution of systems of this size
is prohibitively expensive, both with respect to the amount of storage and to
the computational work. Therefore iterative methods like the Gauß–Seidel
or the Jacobi iteration have been used from the beginning of the numerical
treatment of partial differential equations.
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An important step was Young’s successive over-relaxation method (1950)
which is much faster than the closely related Gauß–Seidel iteration. Never-
theless, this method shares with direct elimination methods the disadvantage
that the amount of work does not remain proportional to the number of un-
knowns; the computer time needed to solve a problem grows more rapidly
than the size of the problem. The standard reference on iterative methods
is Varga (1962). For a recent treatment, see Hackbusch (1991).
Multigrid methods were the first to overcome this complexity barrier.

Multigrid methods are composed of simple basic iterations. Probably the
first working multigrid method was developed and analysed by Fedorenko
(1964) for the Laplace equation on the unit square. Bachvalov (1966) con-
sidered the theoretically much more complex case of variable coefficients.
Although the basic idea of combining discretizations on different grids in an
iterative scheme appears to be very natural, the potential of this idea was
not recognized before the middle of the 1970s. At this time, the multigrid
idea began to spread.
The report of Hackbusch (1976) and the paper of Brandt (1977) were

the historical break through. The first big multigrid conference in 1981 in
Köln was a culmination point of the development; the conference proceedings
edited by Hackbusch and Trottenberg (1982) are still a basic reference. With
Hackbusch’s 1985 monograph, the first stage in multigrid theory came to an
end.
Today, multigrid methods are used in nearly every field where partial

differential equations are solved by numerical methods. They are applied
in computational fluid dynamics as well as in semiconductor simulations.
The bibliographies in McCormick (1987) and Wesseling (1992) each contain
several hundred references.
The field of multigrid methods has became too large to review in a single

article. Therefore, in this paper, we restrict our attention to the class of
problems which is best understood, namely to self-adjoint and coercive linear
elliptic boundary value problems. For mathematicians, the typical equation
in this class is the Laplace equation. People, who are more oriented to real
life, would probably think of the partial differential equations of structural
mechanics.
Hackbusch (1982) and Braess and Hackbusch (1983) gave the first really

satisfying convergence proofs for multigrid methods applied to this class of
problem. The main problem with these proofs, and with all other conver-
gence proofs appearing until the beginning of the 1990s, is that they are
based on regularity properties of the boundary value problem which are
rarely satisfied in practice. In addition, the underlying finite element or
finite difference meshes have to be quasi-uniform, i.e. all discretization cells
have to be of approximately the same size. Although these assumptions are
common in the theory of finite element methods, they are unrealistic.
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These problems led Bank and Dupont (1980) and Axelsson and Gustafs-
son (1983) to the development of the two-level hierarchical basis methods.
Yserentant (1986b) and Bank, Dupont and Yserentant (1988) extended this
idea to the multilevel case. These methods have a simpler structure than
the usual multigrid methods and do not depend, by their construction, on
the restrictive assumptions mentioned earlier. Hierarchical basis methods
have been shown to be very efficient in adaptive finite element codes; see
Bank (1990) and Deuflhard, Leinen and Yserentant (1989).
Another development of the 1980s were the domain decomposition meth-

ods with the Schwarz alternating method as an early example; see Chan
et al. (1989), for example. Recently these independent fields merged in a
joint abstract theory which is flexible enough to treat many, at first sight
completely different iteration schemes. The basic references are Bramble,
Pasciak, Wang and Xu (1991a, 1991b), Bramble and Pasciak (1991), Dryja
and Widlund (1991) and, especially in regard to terminology, Xu (1992b).
This unified theory is one of the main topics of the present review article.
Fast iterative methods for the systems of equations

Au = f (1.1)

resulting from the discretization of self-adjoint coercive linear elliptic bound-
ary value problems are not only of interest in their own field but also of
interest elsewhere.
For example, such methods can be utilized for the efficient solution of

saddle point problems
(
A BT

B 0

)(
u
v

)
=

(
f
g

)
(1.2)

as they arise from the discretization of the Stokes equation. Such approaches
are described and analysed in the papers of Bramble and Pasciak (1988) and
Bank, Welfert and Yserentant (1990).
Fast iterative methods for the equation (1.1) can also be used to construct

comparably fast methods for the solution of systems

(A+M)u = f (1.3)

arising from the discretization of boundary value problems with lower order
terms (here represented by M) making the system indefinite and/or un-
symmetric. Helmholtz type and convection–diffusion equations fall into this
class. Methods of this type are described in Yserentant (1986c), Vassilevski
(1992) and Xu (1992a). The mathematical background of these papers is
an observation concerning the finite element discretization of perturbed el-
liptic boundary value problems which has been made by Schatz (1974).
The analysis of multigrid methods, which can be directly applied to such
boundary value problems, is also based on such perturbation arguments; see
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Bank (1981), for example. A completely different approach can be found in
Yserentant (1988).
If M is not self-adjoint and becomes the dominating part in (1.3), i.e.

for convection-dominated problems, for example, the construction of appro-
priate fast solvers becomes more difficult and is still in its infancy. Until
the present day, most iterative methods for such problems were constructed
on a more or less heuristic basis. Multigrid methods based on incomplete
factorizations turned out to be very efficient. For certain model problems,
a rigorous analysis is possible; see Hackbusch (1985), Wittum (1989b) or
Stevenson (1992). With his frequency decomposition multigrid methods,
Hackbusch (1989a,b) presented a very promising approach. These methods
are also well suited to boundary value problems with strong anisotropies.
It should be mentioned that conjugate-gradient-like algorithms play an im-
portant role in the solution of nonsymmetric linear algebraic equations like
(1.3). For a survey of recent developments, see Freund, Golub and Nachtigal
(1992).
Last, but not least, fast iterative solvers for standard symmetric, positive

definite finite element equations can be applied to related nonlinear bound-
ary value problems via approximate Newton techniques; see Bank and Rose
(1982) and Deuflhard (1992). Often, such methods based on inner–outer
iterations present an alternative to nonlinear multigrid methods which treat
the boundary value problem directly. Information about nonlinear multi-
grid methods can be found in Hackbusch’s 1985 book. A very elaborate
convergence analysis is given in Hackbusch and Reusken (1989).
The rest of this paper is organized as follows. In Section 2, we introduce

a very general class of approximate subspace correction methods for the
solution of abstract linear equations Au = f with self-adjoint and positive
definite operators A replacing the usual matrices. The classical multigrid
or, as we often prefer to say, multilevel methods as well as many domain
decomposition methods are such subspace correction methods. How multi-
grid methods can be interpreted in this sense, will be discussed in detail.
In addition to the classical multigrid algorithms, we present the hierarchi-
cal basis methods, which are extremely well suited to adaptively generated,
nonuniform finite element meshes.
In Section 3, a first convergence proof for two-grid methods is given. This

proof follows the lines given in Bank and Dupont (1981). The two-grid
convergence result can be utilized to prove the convergence of the so called
multigrid W -cycle. All early convergence proofs for multigrid methods fol-
lowed this strategy.
A more sophisticated multigrid convergence proof based on the ideas of

Braess and Hackbusch (1983) will be presented in Section 4. Contrary to
the two grid–multigrid analysis, this convergence proof also applies to the
multigrid V -cycle which is simpler than the W -cycle.
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In Section 5, a general convergence theory for the recursively defined, mul-
tiplicative subspace correction methods introduced in Section 2 is developed.
In Section 6, this abstract theory is applied to multigrid methods for the
solution of finite element equations and to the hierarchical basis multigrid
method of Bank, Dupont and Yserentant (1988). In addition to a regular-
ity dependent convergence result, which is closely related to the result of
Wittum (1989a), a first regularity free convergence estimate is derived.
Utilizing the results presented in Section 7, one can show that multigrid

methods reach an optimal complexity which is independent of the regularity
properties of the boundary value problem. These results are mainly due to
Oswald (1990, 1991) and to the forthcoming paper of Dahmen and Kunoth
(1992). Many of the tools employed in these papers were taken from the
classical approximation theory and the theory of function spaces. A self-
contained presentation for the case of second order problems can be found
in Bornemann and Yserentant (1992).
Finally, in Section 8, we devote our attention to additive multilevel meth-

ods which are a special case of the additive subspace correction methods
already introduced in Section 2. The most prominent examples of these
methods are the hierarchical basis solver (Yserentant, 1986b) and the re-
cent multilevel nodal basis method of Bramble, Pasciak and Xu (1990) and
Xu (1989). Our presentation follows Xu (1992b) and Yserentant (1990).
These methods are more flexible and simpler than the usual recursively de-
fined multilevel methods and fit very well to nonuniformly refined grids. In
addition, they present advantages for implementation on parallel computers.
The present survey article is strongly influenced by the recent work of

Bramble, Pasciak, Wang and Xu. Although not explicitly stated at every
place, often we follow their argumentation very closely, especially in Sections
2, 5 and 8. The merits of these authors are herewith explicitly acknowledged.
Special thanks also to Randy Bank and Wolfgang Hackbusch who laid

the foundations of multigrid convergence theory. They have supported me
in many respects.

2. Subspace correction- and multilevel-methods

We begin this section with a very abstract formulation of a discrete elliptic
boundary value problem. Let S be a finite dimensional space. We assume
that S is equipped with an inner product a(u, v) inducing the norm

‖u‖ = a(u, u)1/2 (2.1)

and a second inner product (u, v) inducing the norm

‖u‖0 = (u, u)1/2. (2.2)
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We introduce a symmetric and positive definite operator A : S → S by the
relation

(Au, v) = a(u, v), v ∈ S, (2.3)

where symmetric and positive definite here is always understood to be sym-
metric and positive definite with respect to the inner product (u, v). Our
aim is the construction and analysis of a general class of fast solvers for the
abstract linear equation

Au = f. (2.4)

This equation is equivalent to the problem finding an u ∈ S satisfying the
relation

a(u, v) = (f, v) (2.5)

for all elements v ∈ S. We remark that the inner product (2.2) does not enter
the final form of the algorithms as they are implemented on the computer,
and that the constants in our central abstract convergence theorems will be
invariant under a change in this inner product.
In the applications that we have in mind, (2.1) is the norm induced by the

elliptic boundary value problem under consideration whereas (2.2) is chosen
to be a L2-like inner product. To give an example, let Ω ⊆ IR2 be a bounded
polygonal domain. As a model problem, we consider the differential equation

−
2∑

i,j=1

Dj(aijDiu) = f (2.6)

on Ω with homogeneous boundary conditions u = 0 on the boundary of Ω.
The weak formulation of this boundary value problem is to find a function
u ∈ H1

0 (Ω) satisfying the relation

a(u, v) =

∫

Ω
fv dx (2.7)

for all v ∈ H1
0 (Ω) where, in this example, the bilinear form a(u, v) is given

by the integral expression

a(u, v) =

∫

Ω

2∑

i,j=1

aijDiuDjv dx. (2.8)

We assume that the aij are continuously differentiable functions, that

aij = aji, (2.9)

and that there are positive constants M and δ with

δ
2∑

i=1

ξ2i ≤
2∑

i,j=1

aij(x)ξiξj ≤ M
2∑

i=1

ξ2i (2.10)
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for all x ∈ Ω and all ξ1, ξ2 ∈ IR. These conditions guarantee that (2.8)
defines an inner product on H1

0 (Ω) which is equivalent to the usual inner
product on this space.
By a triangulation T of Ω, we mean a set of triangles such that the

intersection of two such triangles is either empty or consists of a common
edge or a common vertex. Here we start with an intentionally coarse initial
triangulation T0 of Ω. The triangulation T0 is refined several times, giving
a family of nested triangulations T0, T1, T2, . . . . For ease of presentation, we
consider only uniformly refined families of triangulations in this article, at
least from a rigorous point of view. Thus a triangle of Tk+1 is generated by
subdividing of triangle of Tk into four congruent subtriangles.
Nevertheless one should keep in mind that nonuniformly refined meshes

are absolutely necessary to approximate solutions with singularities arising
from corners, cracks, interfaces or nonlinearities. On an informal basis, we
will discuss whether and in which way the presented results can be general-
ized to such sequences of grids.
For triangular grids, the most successful nonuniform refinement scheme is

due to Bank and Weiser (1985). It is also described in Bank et al. (1988).
The scheme is based on the regular subdivision of triangles as described
earlier and on carefully chosen additional bisections of triangles. Refine-
ment schemes, which are based exclusively on the bisection of triangles, are
discussed in Bänsch (1991) and Rivara (1984). The nonuniform refinement
of tetrahedral meshes in three space dimensions is a harder challenge. In
Bänsch (1991), the bisection of tetrahedra is utilized. The refinement strat-
egy of Bank and Weiser can also be generalized to three dimensions.
Corresponding to the triangulations Tk we have finite element spaces Sk.

In our example, Sk consists of all functions which are continuous on Ω and
linear on the triangles in Tk and which vanish on the boundary of Ω. By
construction, Sk is a subspace of Sl for k ≤ l. The extension of the presented
results to higher order spaces is more or less obvious.
For the rest of this paper, we fix a final level j and the corresponding finite

element space S = Sj . The discrete boundary value problem correspond-
ing to the abstract linear problem (2.4), (2.5) is to find a function u ∈ S
satisfying the relation

a(u, v) =

∫

Ω
fv dx (2.11)

for all functions v ∈ S.
As mentioned earlier, the inner product (2.2) is usually a L2-like inner

product with an appropriate weight function. Our choice is

(u, v) =
∑

T∈T0

1

area(T )

∫

T
uv dx. (2.12)



292 Harry Yserentant

The task of the weights here is to make our estimates independent of the size
of the triangles in the initial triangulation. In the three-dimensional case,
these factors have to be replaced by other factors behaving like 1/diam(T )2.
After this illustrating example, which will accompany the whole paper,

we return to the general theory. LetW0,W1, . . . ,WJ be subspaces of S. We
assume that every u ∈ S can be written as

u = w0 + w1 + . . . + wJ , wl ∈ Wl. (2.13)

We neither assume that this representation is unique, nor that the spaces
Wl are nested.
We need two kinds of orthogonal projections onto the spaces Wl. The

projections Ql : S → Wl are defined by

(Qlu,wl) = (u,wl), wl ∈ Wl, (2.14)

and the projections Pl : S → Wl by

a(Plu,wl) = a(u,wl), wl ∈ Wl. (2.15)

If u ∈ S is the solution of (2.4), and (2.5), respectively, Plu ∈ Wl is the Ritz
approximation of this solution in Wl.
The basic building block of the iterative methods considered here are the

subspace corrections

ũ ← ũ+ Pl(u− ũ) (2.16)

with respect to the spacesWl. The subspace correction (2.16) makes the er-
ror u−ũ between the exact solution and the new approximation a-orthogonal
to the space Wl.
To express these subspace corrections in terms of the right-hand side f and

the approximations ũ, we introduce the Ritz approximations Al :Wl →Wl

of the operator A with respect to the spaces Wl. They are defined by

(Alu, v) = (Au, v), u, v ∈ Wl, (2.17)

or equivalently by

(Alu, v) = a(u, v), u, v ∈ Wl. (2.18)

The operators A,Al, Pl and Ql are connected by the relation

AlPl = QlA. (2.19)

(2.19) easily follows from

(AlPlu,wl) = a(Plu,wl) = a(u,wl) = (Au,wl) = (QlAu,wl).

By (2.19), the Ritz approximation Plu of the solution u of (2.4) satisfies the
equation

AlPlu = Qlf, (2.20)
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and the subspace correction (2.16) can be written as

ũ ← ũ+A−1
l Ql(f −Aũ). (2.21)

It requires the computation of the Ritz approximation

Pl(u− ũ) = A−1
l Ql(f −Aũ) (2.22)

of the error u− ũ.
The problem is that, for sufficiently large and complicated subspaces Wl,

the computation of this approximate defect is far too expensive to lead to
a reasonable method. Therefore we replace the subspace corrections (2.21)
by approximate subspace corrections

ũ ← ũ+B−1
l Ql(f −Aũ) (2.23)

with symmetric and positive definite operators Bl :Wl →Wl. The operators
Bl should have the property that the correction term

dl = B−1
l Ql(f −Aũ) (2.24)

can easily be computed as the solution of the linear system

(Bldl, wl) = (f −Aũ, wl), wl ∈ Wl. (2.25)

Here we should remark that the computation of the right-hand side of (2.25)

(f −Aũ, wl) = (f, wl)− a(ũ, wl) (2.26)

does not require an explicit knowledge of the abstract operator A but only
of the bilinear form a(u, v) and of the linear functional representing the
right-hand side of the equation.
A common situation is that the computation of the correction term in

(2.23) consists of, say, m steps of a given convergent iterative procedure

w̃l ← w̃l + B̂−1
l (rl −Alw̃l) (2.27)

for the solution of the equation

Alwl = rl, rl = Ql(f −Aũ), (2.28)

with a symmetric positive definite operator B̂l :Wl →Wl, that means of m
Jacobi steps, for example, where one starts with wl = 0. Then the operator
Bl is given by

B−1
l = (I − (I − B̂−1

l Al)
m)A−1

l , (2.29)

and is automatically symmetric and positive definite.
If one combines the single subspaces corrections

ũ ← ũ+B−1
l Ql(f −Aũ) (2.30)

sequentially in the order l = 0, 1, . . . , J , one obtains the multiplicative sub-

space correction method corresponding to the subspaces W0, . . . ,WJ of S.



294 Harry Yserentant

These method generalize the classical Gauß–Seidel iteration where the sub-
spaces are one-dimensional and are spanned by basis functions.
Sufficient for the convergence of this composed method is that the itera-

tions

wl ← wl +B−1
l (fl −Alwl) (2.31)

for the solution of the equations Alwl = fl on Wl converge for arbitrarily
chosen right-hand sides fl and the initial approximation wl = 0; this follows
from Theorem 5.1 and the finite dimension of S. If one assumes that

(Alwl, wl) ≤ ω (Blwl, wl), wl ∈ Wl, (2.32)

this condition is equivalent to

0 < ω < 2. (2.33)

We remark that the condition (2.33) is automatically satisfied, if the Bl
themselves represent multiplicative subspace correction methods with exact
subspace solvers, for example Gauß–Seidel iterations for the approximate
solutions of the linear systems involving the operator Al. For this particular
choice, we have ω = 1.
Classical multigrid methods for the solution of finite element equations like

(2.11) fall into the category of such multiplicative subspace correction meth-
ods. The multigrid V -cycle is a multiplicative subspace correction method
with the coarse grid spaces Sl as subspaces Wl.
The V -cycle is usually defined by recursion on the number j of refinement

levels. For the initial level 0, when only one grid is present, the equations
are solved exactly. For two or more levels, one proceeds as follows.
Beginning with an approximation u0 = ũ of the finite element equation

Aju = f , first a coarse grid correction is performed. For the two-level case,
one computes the approximate defect d = Pj−1(u− ũ) ∈ Sj−1 as the solution
of the level j − 1 equation

Aj−1d = Qj−1(f −Aju) (2.34)

and sets

u1 = u0 + d. (2.35)

Then further intermediate approximations u2, . . . , um+1 ∈ Sj are determined
by m so called smoothing steps

ui+1 = ui + B̂−1
j (f −Ajui). (2.36)

One ends with ũ = um+1 as the new approximation for the solution of the
equation Aju = f . For more than two levels, the coarse grid equation (2.34)
is approximately solved by a call of the method for the level j − 1.
If the coarse level equations (2.34) are not solved by one but by two calls
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of the method for the preceding level, one speaks of a W -cycle multigrid

method. Other cycling strategies are possible but will not be discussed here.
For the multigrid V -cycle, the number j+1 of levels and the number J + 1

of subspace corrections coincide. Compared with the V -cycle, additional
subspace corrections are added in the W -cycle. The number of subspace
corrections exceeds the number of levels, although each of the subspaces
Wl, l = 0, . . . , J , is one of the spaces Sk, k = 0, . . . , j.
The reason for the extremely fast convergence of multigrid methods in

comparison to the underlying smoothers is that these iterations are very
selective for the different components of the error. Fast oscillating com-
ponents (with respect to the given level) are strongly reduced whereas the
remaining components are nearly unaffected. The error is smoothed, as the
term ‘smoothing step’ indicates. As the smooth components of the error are
already small because of the preceding coarse grid correction, the composed
method can be very efficient.
For simple model problems (constant coefficients, square grids, periodic

boundary conditions, etc.) the interaction of the smoothing steps and the
coarse level corrections can be quantitatively studied using a Fourier or
local mode analysis. We refer to Hackbusch’s 1985 book, to Stüben and
Trottenberg (1982) and to Brandt (1982).
For any good iterative solver for the solution of finite element equations,

the amount of work per iteration step should be proportional to the number
of unknowns. Next we check whether this condition is satisfied for the
multigrid methods introduced earlier.
Without regarding the algorithmic realization in detail (recall only (2.26)),

we get the recursion formula

Wj = pWj−1 + Cnj (2.37)

for the work Wj necessary to perform one step of the multigrid method
for the solution of a equation in Sj . nj denotes the dimension of Sj . p = 1
corresponds to the V -cycle and p = 2 to theW -cycle. Here we have assumed
that the amount of work per cycle, except for the approximate solution of
the coarse level equation (2.34), behaves like Cnj , which is the case for all
reasonable smoothers. The recursion formula (2.37) yields

Wj = pjW0 + C
j∑

k=1

pj−knk. (2.38)

If one disregards the work for the solution of the equations on the level 0,
a simple analysis shows that the operation count Wj for the single multigrid
cycle behaves like O(nj) if and only if the dimensions nk are related by

nk ≤ cqj−knj , k = 1, . . . , j, (2.39)
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where q < 1 for the V -cycle and q < 1/2 for the W -cycle. This means
that the dimensions of the spaces Sk have to increase geometrically. These
conditions are satisfied for our model problem (where the dimension essen-
tially grows by the factor 4 from one level to the next), but they can cause
problems for adaptively generated, nonuniformly refined meshes.
An interesting modification of the classical multigrid methods, especially

as it concerns the application to such adaptively generated, highly nonuni-
form meshes, is the hierarchical basis multigrid method introduced by Bank
et al. (1988).
Compared with classical multigrid methods, it works with smaller spaces
Wl. Nevertheless, for two-dimensional problems, it reaches a similar effi-
ciency as those of classical multigrid methods. Its structure fits very well
to nonuniformly refined meshes and allows the use of simple data struc-
tures. Under some mild restrictions, theW -cycle version also works in three
space dimensions as can be shown along the lines given in Bank and Dupont
(1980), Braess (1981) and Axelsson and Vassilevski (1989).
To describe this method, we have to realize that a function in the finite

element space Sk is uniquely determined by its values at the nodes x ∈ Nk
which are the vertices of the triangles in the triangulation Tk which do not
lie on the boundary of Ω. Therefore we can define an interpolation operator
Ik : S → Sk by

(Iku)(x) = u(x), x ∈ Nk. (2.40)

Utilizing these interpolation operators, we can define the subspace

Wk = {Iku− Ik−1u |u ∈ S} (2.41)

of Sk as the image of S (or of Sk) under the operator Ik − Ik−1. The
functions in this space Wk vanish at the nodes x ∈ Nk−1. Therefore they
are given by their values at the nodes x ∈ Nk \ Nk−1.
In the hierarchical basis methods, the spaces Sk are replaced by the spaces

(2.41). As with classical multigrid methods, approximate solversBk of a very
simple structure can be used. For a survey, we refer to Yserentant (1992).
In comparison with the recursion

Wj =Wj−1 + Cnj (2.42)

for the work necessary to perform one multigrid V -cycle, the corresponding
recursion formula

Wj =Wj−1 + C(nj − nj−1) (2.43)

for the hierarchical basis multigrid method has a different quality. It yields
the operation count

Wj ≤W0 + Cnj (2.44)
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independently of any assumption on the distribution of the unknowns among
the levels.
For nonuniformly refined families of grids, the only alternative to the hi-

erarchical basis multigrid method are multigrid methods in which the spaces
(2.41) are enriched by those basis functions of Sk which are associated with
the nodes in Nk−1 having neighbours in Nk \ Nk−1. From a computational
point of view, this corresponds to local smoothing procedures. The theoreti-
cal understanding of such methods began with Bramble et al. (1991b).
The recursively defined multiplicative subspace correction methods can

be seen as generalizations of the Gauß–Seidel method. The corresponding
Jacobi-type iterations have recently been the focus of much interest. Because
of their simpler structure, these additive subspace correction methods

ũ ← ũ+
J∑

l=0

B−1
l Ql(f −Aũ) (2.45)

offer many advantages as preconditioners for the conjugate gradient method.
With subspaces Wl as in the hierarchical basis multigrid method and Ja-

cobi type methods as approximate solvers Bl, the additive subspace correc-
tion method for the solution of the finite element equations (2.11) becomes
the hierarchical basis solver; see Yserentant (1986b, 1990, 1992). For the
choice Wl = Sl, one obtains the multilevel nodal basis preconditioner of
Bramble et al. (1990) and Xu (1989); see also Yserentant (1990).

3. An analysis for the two-level case

The first general convergence proofs for classical, recursively defined multi-
grid methods for finite element equations like (2.11) stem from the end of
the 1970s. They are mainly the work of Wolfgang Hackbusch and of Ran-
dolph E. Bank and Todd Dupont; see Hackbusch (1981, 1985) and Bank
and Dupont (1981).
It is Hackbusch’s merit to have identified and clearly separated the two

main building blocks which lay the foundation to all standard convergence
proofs and which became the basis of a countless number of articles ap-
pearing until the present day. These properties are the smoothing property,
which essentially describes the necessary relations between the approximate
subspace solvers and the finite element equations, and the approximation

property, which describes the interaction of the different levels. Both prop-
erties will be discussed in this section.
In this and the next section, we assume that the eigenvalues of the error

propagation operators

I − B̂−1
k Ak (3.1)
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of the smoothing iterations

wk ← wk + B̂−1
k (fk −Akwk) (3.2)

are nonnegative. This condition is equivalent to

(wk, Akwk) ≤ (wk, B̂kwk), wk ∈ Sk, (3.3)

and guarantees the convergence of the iteration (3.2). The condition (3.3)
is stronger than (2.33). (3.3) is our version of the smoothing property.

(3.3) holds, if the operators B̂k are properly scaled, i.e. if the iteration
(3.2) is sufficiently damped. If (3.2) represents a symmetric (block) Gauß–
Seidel iteration, (3.3) is automatically satisfied.
Our second assumption concerns the spaces

Vk = {Pku− Pk−1u |u ∈ S} ⊆ Sk, (3.4)

i.e. the a-orthogonal complements of the spaces Sk−1 in Sk. We assume that
there exists a constant K with

(vk, B̂kvk) ≤ K(vk, Akvk), vk ∈ Vk. (3.5)

(3.5) is the counterpart to (3.3). As the norms induced by the B̂k are
generally much stronger than the energy norm induced by the Ak, (3.5)
can be interpreted as an approximation property of the functions in Sk by
functions from the subspace Sk−1.
Without any doubt, (3.5) is a much more critical assumption than (3.3).

In the finite element case, and especially for our model problem, (3.5) is
essentially equivalent to the Aubin–Nitsche Lemma; see Ciarlet (1978), for
example. Assume that, for k = 1, . . . , j and all uk ∈ Sk,

c14
k‖uk‖20 ≤ (uk, B̂kuk) ≤ c24k‖uk‖20. (3.6)

Because of the scaling of the L2-like norm (2.12) by the areas of the triangles
in the initial triangulation and the fact that the diameter of the triangles
shrinks by the factor 2 from one level to the next, smoothers like the Jacobi
iteration or the symmetric point Gauß–Seidel iteration have this property.
With (3.6), the condition (3.5) is equivalent to the estimate

‖Pku− Pk−1u‖0 ≤ c 2−k‖Pku− Pk−1u‖ (3.7)

for the functions u ∈ S, or, with an infinite sequence of spaces Sk, even
equivalent to the estimate

‖u− Pku‖0 ≤ 1
3c 2

−k‖u− Pku‖ (3.8)

for the functions u in the continuous solution space H1
0 (Ω). (3.8) and (3.7),

respectively, imply (3.5) if the upper estimate in (3.6) holds.
It is well known that (3.8) holds only for H2-regular problems, i.e. if the
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solution u of the continuous problem (2.6) belongs to H2 for right-hand sides
f ∈ L2 and satisfies an estimate

‖u‖H2 ≤ c̃ ‖f‖L2 . (3.9)

This holds only if the domain Ω has a C2-boundary or if Ω is convex. For
domains Ω with re-entrant corners, (3.9) is wrong.
This fact restricts the applicability of the classical multigrid convergence

theory, although, using differently weighted L2-norms (with weights depend-
ing on the interior angles of the domain) and properly refined triangulations,
the algebraic estimates derived in this and the next section can also be ap-
plied to certain problems on domains with re-entrant corners; see Yserentant
(1986a, 1983) and S. Zhang (1990).
The basic result of this section is an estimate for the convergence rate

of the algorithm described by (2.34), (2.35) and (2.36), i.e. for the case in
which the coarse grid correction is exactly determined and only two levels
are present.

Theorem 3.1 If u0 ∈ S is the initial approximation for the solution u ∈ S
of the finite element equation Au = f , the new approximation um+1 ∈ S
(after a full two-grid cycle (2.34), (2.35), (2.36)) satisfies the estimate

‖u− um+1‖2 ≤ Kγ(m)‖u− u0‖2, (3.10)

where the generic constant γ(m) is given by

γ(m) =
1

2m+ 1
(1− 1

2m+ 1
)2m (3.11)

and K is the constant from the approximation property (3.5).

Proof. The main ingredient of the proof is a biorthogonal basis ψ1, . . . , ψn
of S with

(ψi, B̂ψl) = δil, (ψi, Aψl) = λiδil, (3.12)

where we suppress the subscript j for a while; the existence of such a basis
follows from basic facts of linear algebra. Then, for u =

∑n
i=1 aiψi ∈ S, the

norm (2.1) is given by

‖u‖2 =
n∑

i=1

λia
2
i . (3.13)

If we introduce the discrete norm

|||u||| = (u, B̂u)1/2, u ∈ S, (3.14)

this norm has the representation

|||u|||2 =
n∑

i=1

a2i . (3.15)
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The proof of Theorem 3.1 is based on the eigenfunction expansion

Gv =
n∑

i=1

(1− λi)aiψi (3.16)

for v =
∑n
i=1 aiψi of the error propagation operator

G = I − B̂−1A (3.17)

for the smoothing process. Introducing the errors

ek = u− uk, k = 0, . . . ,m+ 1, (3.18)

between the exact solution u ∈ S and the intermediate approximations
u0, u1, . . . , um+1 of u, the errors e2, . . . , em can be expressed as

ek+1 = Gke1, k = 0, . . . ,m, (3.19)

in terms of the error e1 after the coarse grid correction.
If e1 =

∑n
i=1 aiψi, one finds

‖em+1‖2 = ‖
n∑

i=1

(1− λi)maiψi‖2 =
n∑

i=1

λi(1− λi)2ma2i . (3.20)

The smoothing property (3.3) is equivalent to the bound

λi ≤ 1, i = 1, . . . , n, (3.21)

for the eigenvalues λi. Therefore

max
i=1,...,n

λi(1− λi)2m ≤ max
0≤λ≤1

λ(1− λ)2m = γ(m) (3.22)

and

‖em+1‖2 ≤ γ(m)
n∑

i=1

a2i = γ(m)|||e1|||2. (3.23)

As, by the approximation property (3.5),

|||e1|||2 = |||e0 − Pj−1e0|||2 ≤ K‖e0 − Pj−1e0‖2 ≤ K‖e0‖2, (3.24)

the proposition

‖em+1‖2 ≤ Kγ(m)‖e0‖2 (3.25)

of Theorem 3.1 follows. 2

The theorem states that the two-grid method converges and that its con-
vergence rate Kγ(m) becomes even arbitrarily small as soon as the number
m of smoothing steps is sufficiently large. As the constant K in the ap-
proximation property (3.5) does not depend on j, the convergence rate is
independent of the grid size.
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This fact can be utilized to prove the convergence of theW -cycle by a rela-
tively simple recursion argument, which is the idea behind all early multigrid
convergence proofs. A detailed discussion can be found in Hackbusch’s 1985
book or in Stüben and Trottenberg (1982).
Although the two-grid–multigrid analysis is very suggestive and has a

broad range of application, the results obtained in this way do not completely
satisfy for the given case of self-adjoint, coercive elliptic boundary value
problems. Experience says that, applied to problems of this class, not only
the W -cycle but also the much simpler and cheaper V -cycle converges very
fast. In addition, one smoothing step per level turns out to be sufficient.

4. A convergence proof for the V -cycle

The much more sophisticated convergence analysis of Braess and Hackbusch
(1983) supports these observations theoretically. In this section, we derive
their result in an algebraic language as in Yserentant (1983). Closely related
estimates are proven in Bank and Douglas (1985). The assumptions in this
section are the same as in the previous section.
Following the original work and contrary to the definition given in Sec-

tion 2, in this section we assume that the order of the coarse grid correction
(2.34), (2.35) and of the smoothing steps (2.36) is reversed. This is no es-
sential change because it is easy to see that the convergence rates of both
versions are equal. The order that we chose in Section 2, seems to be more
natural from the point of view of subspace correction methods. This version
will be analysed in Section 6.

Theorem 4.1 If u ∈ S denotes the exact solution of the equation to be
solved and if u0 ∈ S is the given initial approximation of u, the new approx-
imation um+1 ∈ S, obtained by a multigrid V -cycle or W -cycle, satisfies the
estimate

‖u− um+1‖2 ≤
c

c+ 2m
‖u− u0‖2, (4.1)

where c = K2 and K is the constant from the approximation property (3.5).

As in the two-level proof of the previous section, the proof is based on the
eigenfunction expansion (3.16) of the error propagation operator G for the
smoothing process which is given by (3.17).
As the eigenvalues λi are not greater than 1, we have 1− λi ≥ 0 for all i

and can define the powers Gα, α ≥ 0, of G by

Gαv =
n∑

i=1

(1− λi)αaiψi, (4.2)

where v =
∑n
i=1 aiψi is the eigenfunction expansion of the function v ∈ S.
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The main ingredient of the proof is the functional

ρ(v) =

{
‖G1/2v‖2/‖v‖2 , v 6= 0
0 , v = 0

(4.3)

for the elements v ∈ S. Note that always ρ(v) ≤ 1. ρ(v) can be seen as
a measure for the smoothness of v. If ρ(v) is small compared with 1, the
smoothed element Gv has a small norm compared with v.
Our first lemma describes the success of the coarse grid correction in terms

of this kind of smoothness of the error.

Lemma 4.2 For all functions v ∈ S, v − Pj−1v satisfies the estimate

‖v − Pj−1v‖2 ≤ min{1,K(1− ρ(v))} ‖v‖2. (4.4)

Proof. Let v ∈ S and v − Pj−1v have the eigenfunction expansions

v =
n∑

i=1

aiψi, v − Pj−1v =
n∑

i=1

biψi.

Then

‖v − Pj−1v‖2 = a(v − Pj−1v, v) =
n∑

i=1

λiaibi.

With the Schwarz inequality, this yields

‖v − Pj−1v‖2 ≤
( n∑

i=1

b2i

)1/2( n∑

i=1

λ2i a
2
i

)1/2

=
( n∑

i=1

b2i

)1/2{ n∑

i=1

λia
2
i −

n∑

i=1

λi(1− λi)a2i
}1/2

= |||v − Pj−1v||| { ‖v‖2 − ‖G1/2v‖2 }1/2

= |||v − Pj−1v||| {1− ρ(v)}1/2 ‖v‖.
Inserting (3.5), this means

|||v − Pj−1v|||2 ≤ K‖v − Pj−1v‖2,
one obtains

‖v − Pj−1v‖2 ≤ K(1− ρ(v)) ‖v‖2.
This proves the proposition. 2

Together with the next lemma describing the effect of the smoothing it-
erations, Lemma 4.2 forms the backbone of the proof of Theorem 4.1.

Lemma 4.3 For all functions v ∈ S, Gkv satisfies the estimate

‖Gkv‖ ≤ ρ(Gkv)k‖v‖. (4.5)
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Proof. Let µi = 1−λi. Because of µi ≥ 0 and utilizing Hölder’s inequality,
one obtains, for all v =

∑n
i=1 aiψi,

‖Gkv‖2 =
n∑

i=1

λi(µ
k
i ai)

2

=
n∑

i=1

(λiµ
2k+1
i a2i )

2k
2k+1 (λia

2
i )

1
2k+1

≤
( n∑

i=1

λiµ
2k+1
i a2i

) 2k
2k+1

( n∑

i=1

λia
2
i

) 1
2k+1

= ‖Gk+1/2v‖ 4k
2k+1 ‖v‖ 2

2k+1 .

This estimate is equivalent to

‖Gkv‖‖Gkv‖2k ≤ ‖G1/2(Gkv)‖2k‖v‖.
This is the proposition. 2

Now we can prove the theorem. Denoting by d = Pj−1em the exact coarse

grid correction and by d̃ ∈ Sj−1 the approximate coarse grid correction
computed by p steps of the method for the level j− 1, one obtains, utilizing

em+1 = (em − Pj−1em) + (d− d̃), (4.6)

the relation

‖em+1‖2 = ‖em − Pj−1em‖2 + ‖d− d̃‖2. (4.7)

With an upper bound δj−1 for the convergence rate of the method on the
preceding level j − 1,

‖em+1‖2 ≤ ‖em − Pj−1em‖2 + δ2pj−1‖Pj−1em‖2 (4.8)

follows. This equation can be rewritten as

‖em+1‖2 ≤ (1− δ2pj−1)‖em − Pj−1em‖2 + δ2pj−1‖em‖2. (4.9)

Lemma 4.2 yields

‖em − Pj−1em‖2 ≤ min{1,K(1− ρ(em))}‖em‖2, (4.10)

and Lemma 4.3

‖em‖2 ≤ ρ(em)
2m‖e0‖2. (4.11)

If we insert these relations, we have proven the estimate

‖u− um+1‖2 ≤ δ2j ‖u− u0‖2, (4.12)

where δj is given by the relatively complicated expression

δ2j = max
0≤ρ≤1

ρ2m[(1− δ2pj−1)min{1,K(1− ρ)}+ δ2pj−1]. (4.13)
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Together with

δ0 = 0, (4.14)

this recursion leads to an estimate for the convergence rates δj .
For a fixed ρ ∈ [0, 1], the function

ε→ ρ2m[(1− ε)min{1,K(1− ρ)}+ ε] (4.15)

increases monotonically. Introducing the abbreviation c(m) = c/(c + 2m),
the assumption

δ2j−1 ≤ c(m) (4.16)

leads therefore to

δ2j ≤ max
0≤ρ≤1

R(ρ), (4.17)

where the function R(ρ) is given by

R(ρ) = ρ2m[(1− c(m))min{1,K(1− ρ)}+ c(m)]. (4.18)

As necessarily K ≥ 1, R(ρ) is monotonically increasing on the interval [0, 1].
This proves the estimate

δ2j ≤ R(1) = c(m) (4.19)

for the convergence rate of the multigrid method.
Later, in Wittum (1989a), Theorem 4.1 has been generalized to the case

that the error propagation operator (3.1) can have negative eigenvalues.
Both the analysis of Braess and Hackbusch and that of Wittum do not take
the internal structure of the smoothers into account. A result refined in this
respect has been proven by Stevenson (1992). Reusken (1992) examined the
convergence of multigrid methods with respect to the maximum norm. He
shows that, up to a logarithmic factor, one can obtain the same convergence
estimates as for the energy norm studied here. Another convergence proof,
based on projection arguments and norm estimates instead of eigenfunction
expansions, can be found in Mandel, McCormick and Bank (1987).

5. General multiplicative methods

A main drawback of all these approaches is their strong dependence on the
regularity properties of the boundary value problem and of the considered
family of grids which is reflected in the assumption (3.5). This fact makes
it extremely difficult to apply these theories in a rigorous sense to prob-
lems with singularities caused by re-entrant corners, jumps in the boundary
conditions, by interfaces, and so on.
Recently Bramble et al. (1991a, 1991b) developed an alternative conver-

gence theory which overcomes these difficulties to a large extent.
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This theory can be formulated in the abstract framework of the multi-
plicative subspace correction methods introduced in Section 2. We remark
that the case of non overlapping subspacesWk (which covers the hierarchical
basis multigrid method) has implicitly been treated in Bank et al. (1988).
With some slight modifications as presented in Bramble and Pasciak

(1991), Xu (1992b), or in the present paper, the theory shows that the
convergence rate of multigrid methods is uniformly bounded independently
of any regularity of the boundary value under consideration. It does not
show that the convergence rate tends to zero if one increases the number of
smoothing steps per level.
In this section, we develop the abstract theory for the multiplicative sub-

space correction methods introduced in Section 2. The application to our
model problem and to other elliptic boundary value problems will be dis-
cussed in the next section.
The theory is based on the decomposition of the space S into a direct sum

S = V0 ⊕ V1 ⊕ . . .⊕ VJ (5.1)

of subspaces Vk ⊆ Wk. These subspaces Vk are only a tool for the theoretical
analysis, they do not enter the practical computation. Often, this fact gives
a lot of freedom in the choice of these subspaces and makes the convergence
theory very flexible.
Two assumptions have to be fulfilled to apply the theory. The first as-

sumption concerns the stability of the decomposition. We require that there
exists a constant K1 such that, for all vk ∈ Vk,

J∑

k=0

(Bkvk, vk) ≤ K1 ‖
J∑

k=0

vk‖2. (5.2)

The second assumption is a Cauchy–Schwarz type inequality. We assume
that there exist constants γkl = γlk with

a(wk, vl) ≤ γkl (Bkwk, wk)
1/2(Blvl, vl)

1/2 (5.3)

for k ≤ l, all wk ∈ Wk, and all vl ∈ Vl such that

J∑

k,l=0

γklxkyl ≤ K2(
J∑

k=0

x2k)
1/2(

J∑

l=0

y2l )
1/2 (5.4)

holds for all xk, yl ∈ IR. That means, we require that the spectral radius of
the matrix (γkl) is bounded by a constant K2.
In addition, we assume that the constant ω in (2.32) satisfies the condition

ω < 2 (5.5)

which is equivalent to the convergence of the basic iterations (2.31).
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(5.3) includes the Cauchy–Schwarz type inequality

a(vk, vl) ≤ γkl (Bkvk, vk)
1/2(Blvl, vl)

1/2 (5.6)

for vk ∈ Vk, vl ∈ Vl, and k, l = 0, . . . , J . (5.6) and (5.4) imply that, corre-
sponding to (5.2),

‖
J∑

k=0

vk‖2 ≤ K2

J∑

k=0

(Bkvk, vk) (5.7)

for all vk ∈ Vk. Therefore the expression

|||
J∑

k=0

vk|||2 =
J∑

k=0

(Bkvk, vk) (5.8)

defines a norm on S which is, up to the constants K1 and K2, equivalent to
the norm (2.1) induced by the abstract boundary value problem itself.

With the orthogonal projections Pk onto the spaces Wk, the exact sub-
space corrections (2.16) are

ũ ← ũ+ Pk(u− ũ). (5.9)

If we define the operators

Tk := B−1
k AkPk = B−1

k QkA, (5.10)

the approximate subspace corrections (2.23) are correspondingly given by

ũ ← ũ+ Tk(u− ũ). (5.11)

After the substep (2.23), the new error is

ũ− u ← (I − Tk)(ũ− u). (5.12)

Thus the convergence rate of the multiplicative subspace correction method
with respect to the norm (2.1) is the induced norm of the operator

E = (I − TJ) . . . (I − T0). (5.13)

Theorem 5.1 Every cycle of the abstract multiplicative subspace correc-
tion method introduced in Section 2 reduces the norm (2.1) of the error at
least by the factor ‖E‖ where

‖E‖2 ≤ 1− 2− ω
K1(1 +K2)2

. (5.14)

This factor depends only on the constant K1 from the stability assumption
(5.2), on the constant K2 from (5.4), and on the constant ω < 2 from
equation (2.32).

There are several, in principle, very closely related versions of this theorem
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in the papers of Bramble, Pasciak, Wang and Xu. The present version bears
at most resemblance to that of Xu (1992b).
The proof of the theorem is somewhat technical. It is not so easy to detect

the idea hidden behind it except that the terms considered are cleverly
arranged and split up. The following two lemmas are the main tools:

Lemma 5.2 For all vk ∈ Vk and all uk ∈ S (!),

J∑

k=0

a(vk, uk) ≤
√
K1 ‖

J∑

k=0

vk‖
( J∑

k=0

a(Tkuk, uk)
)1/2

. (5.15)

Proof. One has

J∑

k=0

a(vk, uk) =
J∑

k=0

(B
1/2
k vk, B

−1/2
k AkPkuk)

≤
( J∑

k=0

‖B1/2
k vk‖20

)1/2( J∑

k=0

‖B−1/2
k AkPkuk‖20

)1/2

=
( J∑

k=0

(Bkvk, vk)
)1/2( J∑

k=0

(B−1
k AkPkuk, AkPkuk)

)1/2

=
( J∑

k=0

(Bkvk, vk)
)1/2( J∑

k=0

a(Tkuk, uk)
)1/2

.

With the stability assumption (5.2), the proposition follows. 2

Lemma 5.3 For all u ∈ S,
‖Tku‖2 ≤ ω a(Tku, u). (5.16)

Proof. Because

‖Tku‖2 = (Tku,AkTku) ≤ ω (Tku,BkTku)

= ω (Tku,BkB
−1
k AkPku) = ω a(Tku, Pku) = ω a(Tku, u),

the proposition is a simple consequence of (2.32). 2

Now we are ready to prove Theorem 5.1. The proposition (5.14) is equiv-
alent to the estimate

(2− ω)‖v‖2 ≤ K1(1 +K2)
2(‖v‖2 − ‖Ev‖2) (5.17)

for all v ∈ S. With E−1 = I and

Ek = (I − Tk) . . . (I − T0), k = 1, . . . J,
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one obtains

‖Ek−1v‖2 − ‖Ekv‖2 = 2 a(TkEk−1v,Ek−1v)− ‖TkEk−1v‖2.

With Lemma 5.3,

‖Ek−1v‖2 − ‖Ekv‖2 ≥ (2− ω) a(TkEk−1v,Ek−1v)

follows. Because of EJ = E, summation yields

‖v‖2 − ‖Ev‖2 ≥ (2− ω)
J∑

k=0

a(TkEk−1v,Ek−1v).

Because ω < 2, (5.17) therefore follows from

‖v‖2 ≤ K1(1 +K2)
2

J∑

k=0

a(TkEk−1v,Ek−1v). (5.18)

For the proof of (5.18), let

v =
J∑

l=0

vl, vl ∈ Vl.

Then

‖v‖2 =
J∑

l=0

a(El−1v, vl) +
J∑

l=1

a((I − El−1)v, vl). (5.19)

By Lemma 5.2,

J∑

l=0

a(El−1v, vl) ≤
√
K1 ‖v‖

( J∑

k=0

a(TkEk−1v,Ek−1v)
)1/2

. (5.20)

For the second term on the right-hand side of (5.19), because

I − El−1 =
l−1∑

k=0

TkEk−1,
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and utilizing (5.3), one gets the estimate

J∑

l=1

a((I − El−1)v, vl) =
J∑

l=1

l−1∑

k=0

a(TkEk−1v, vl)

≤
J∑

l=1

l−1∑

k=0

γkl (BkTkEk−1v, TkEk−1v)
1/2(Blvl, vl)

1/2

≤
J∑

l=0

J∑

k=0

γkl (BkTkEk−1v, TkEk−1v)
1/2(Blvl, vl)

1/2

≤ K2

( J∑

k=0

(BkTkEk−1v, TkEk−1v)
)1/2( J∑

l=0

(Blvl, vl)
)1/2

= K2

( J∑

k=0

(Bkvk, vk)
)1/2( J∑

k=0

a(TkEk−1v,Ek−1v)
)1/2

.

(5.21)

By the assumption (5.2),

J∑

l=1

a((I − El−1)v, vl) ≤ K2

√
K1 ‖v‖

( J∑

k=0

a(TkEk−1v,Ek−1v)
)1/2

(5.22)

follows. Combined with (5.20), one obtains (5.18). This finishes the proof
of Theorem 5.1.
Sometimes (for multigrid methods with simple smoothers, for example) it

is possible to prove the stronger estimate

a(wk, w
′
l) ≤ γkl (Bkwk, wk)

1/2(Blw
′
l, w

′
l)
1/2 (5.23)

for wk ∈ Wk, w
′
l ∈ Wl, k, l = 0, . . . , J , which implies (5.3). In this case,

the estimate in Theorem 5.1 holds independently of the order in which the

subspace corrections are performed.
There are situations in which the proof of the Cauchy–Schwarz type in-

equality (5.3) causes problems, especially if the coefficients functions of the
differential operator under consideration are not smooth or even not differ-
entiable. In such cases, it is often still possible to prove the norm estimate
(5.7), provided that the energy norm (2.1) behaves like the energy norm in-
duced by a boundary value problem for which one can prove estimates like
(5.3), (5.4). The norm estimate (5.7) is sufficient to derive an estimate for
the norm of the error propagation operator (5.13) which does not deteriorate
too rapidly in terms of the number of subspaces Wk.

Theorem 5.4 Assuming only (5.7) instead of (5.3) and (5.4), the norm of
the error propagation operator (5.13) satisfies the estimate

‖E‖2 ≤ 1− 2− ω
K1(1 +

√
ωK2J )2

. (5.24)
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Proof. Instead of (5.21), one obtains

J∑

l=1

a((I − El−1)v, vl) =
J∑

l=1

l−1∑

k=0

a(TkEk−1v, vl)

=
J−1∑

k=0

J∑

l=k+1

a(TkEk−1v, vl)

≤
( J−1∑

k=0

‖TkEk−1v‖2
)1/2( J−1∑

k=0

‖
J∑

l=k+1

vl‖2
)1/2

.

For the first factor on the right-hand side, one gets, by Lemma 5.3,

J−1∑

k=0

‖TkEk−1v‖2 ≤ ω
J∑

k=0

a(TkEk−1v,Ek−1v).

Using (5.7), the second factor can be estimated as follows.

J−1∑

k=0

‖
J∑

l=k+1

vl‖2 ≤ K2

J−1∑

k=0

J∑

l=k+1

(Blvl, vl)

≤ K2J
J∑

l=0

(Blvl, vl) ≤ K1K2J‖v‖2.

This yields the estimate

J∑

l=1

a((I − El−1)v, vl) ≤
√
ωK1K2J ‖v‖

( J∑

k=0

a(TkEk−1v,Ek−1v)
)1/2

which replaces (5.22). 2

6. The application to multilevel algorithms

In this section we apply the abstract theory presented in the last section
to the model problem of Section 2. We prove convergence results for the
multigrid methods introduced there.
We begin with the classical multigrid method where the subspaces Wk

are the finite element spaces Sk. In the notation of the previous section, the
error propagation operator of the V -cycle is

EV = E
(j)
V , E

(k)
V = (I − Tk) . . . (I − T0). (6.1)

Because A0 = B0, i.e. T0 = P0, the E
(k)
V satisfy the recursion

E
(0)
V = I − P0, E

(k+1)
V = (I − Tk+1)E

(k)
V . (6.2)

The corresponding recursion for the W -cycle version is

E
(0)
W = I − P0, E

(k+1)
W = (I − Tk+1)E

(k)
W E

(k)
W . (6.3)
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It follows by induction that

E
(k)
W = E

(k)
V R

(k)
W , ‖R(k)

W ‖ ≤ 1. (6.4)

Therefore one gets, for the energy norm of the error propagation operator

EW = E
(j)
W of the W -cycle,

‖EW ‖ ≤ ‖EV ‖. (6.5)

Moreover, if the order of the coarse grid corrections and the smoothing steps
is again reversed, the W -cycle always reduces the energy norm of the error
by at least the same factor as the V -cycle.
For the analysis of the V -cycle multigrid method, we assume that, for

k ≥ 1, the operators Bk : Sk → Sk, the smoothers, satisfy the estimate

c1‖uk‖2 ≤ (uk, Bkuk) ≤ c24k‖uk‖20 (6.6)

for all uk ∈ Sk. This condition is less restrictive than (3.6) and also covers
certain symmetric block Gauß–Seidel schemes, for example.
The crucial point for the application of Theorem 5.1 is the choice of the

spaces Vk ⊆ Sk. Recall that these subspaces do not enter into the computa-
tional process.
The most obvious choice is the a-orthogonal decomposition of S, i.e. the

decomposition of S into V0 = S0 and

Vk = {Pku− Pk−1u |u ∈ S} ⊆ Sk (6.7)

for k = 1, . . . , j. As it has already been discussed in Section 3, forH2-regular
problems,

4k‖vk‖20 ≤ C‖vk‖2, vk ∈ Vk (6.8)

holds. Because

‖P0u‖2 +
j∑

k=1

‖Pku− Pk−1u‖2 = ‖u‖2 (6.9)

for the functions u ∈ S, (6.8) is equivalent to

‖v0‖2 +
j∑

k=1

4k‖vk‖20 ≤ C ‖
j∑

k=0

vk‖2, vk ∈ Vk. (6.10)

With assumption (6.6), this yields (5.2), i.e.

j∑

k=0

(Bkvk, vk) ≤ K1 ‖
j∑

k=0

vk‖2. (6.11)

The Cauchy–Schwarz type inequality (5.3) is trivial because

a(wk, vl) = 0, wk ∈ Wk, vl ∈ Vl (k < l).
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Thus we have shown that, for H2-regular problems, every V -cycle (and
every W -cycle) reduces the energy norm of the error at least by a factor

1−O(1)
which is uniformly less than 1 regardless of the number of refinement levels.
This has already been proven in Wittum (1989a) and, with the restriction
that the smoothing iterations are sufficiently damped, in Braess and Hack-
busch (1983) and Bank and Douglas (1985); see Section 4. Therefore this
estimate is surely not the most spectacular application of the abstract theory
developed in the last section.
But before we discuss other choices of the spaces Vk leading to improved

convergence estimates, we turn to the hierarchical basis multigrid method
also described in Section 2.
For the hierarchical basis multigrid method, the finite element space S is

already the direct sum of the spaces W0 = S0 and

Wk = {Iku− Ik−1u |u ∈ S}, k = 1, . . . , j, (6.12)

introduced in Section 2. Therefore the only possible choice for the subspaces
Vk here are the spaces Wk itself.
It has been shown by Yserentant (1986b) that the decomposition of S into

these spaces Vk is stable in the sense that, for all vk ∈ Vk,

‖v0‖2 +
j∑

k=1

4k‖vk‖20 ≤ C1(j + 1)2 ‖
j∑

k=0

vk‖2. (6.13)

If we assume that the level 0 equations are again solved exactly, i.e. that
B0 = A0, and that, for k ≥ 1, the operators Bk : Wk → Wk satisfy an
estimate

c14
k‖wk‖20 ≤ (wk, Bkwk) ≤ c24k‖wk‖20 (6.14)

for all wk ∈ Wk, a stability condition like (5.2), namely

j∑

k=0

(Bkvk, vk) ≤ K∗
1 (j + 1)2 ‖

j∑

k=0

vk‖2. (6.15)

follows. The constant K1 = K∗
1 (j + 1)2 depends here on the number j of

refinement levels.
The proof of (6.13) is based on the estimate

‖Iku‖2 ≤ C(j − k + 1)‖u‖2, u ∈ S, (6.16)

for the energy norm of the interpolation operators Ik : S → Sk. On one
hand, this is a very robust estimate which is not affected by arbitrarily large
jumps in the coefficient functions across the boundaries of the triangles in
the initial triangulation. Unfortunately, on the other hand, it is dimension
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dependent. For three space dimensions, the logarithmic factor has to be
replaced by a factor which grows exponentially in the number j − k of the
remaining refinement levels. Details can be found in Yserentant (1986b,
1992) and Bank et al. (1988).
The Cauchy–Schwarz type inequality (5.3) follows from (6.14) and Lemma

6.1 which has essentially been proven in Yserentant (1986b). Related results
can be found in Xu (1992b), Bramble and Pasciak (1991), and in X. Zhang
(1991).

Lemma 6.1 There is a constant C, depending only on the constants in
(2.10) describing the ellipticity of the boundary value problem, on the varia-
tion of the coefficient functions, and on the shape regularity of the triangles,
such that, for k ≤ l and all functions u ∈ Sk and v ∈ Sl,

a(u, v) ≤ C (
1√
2
)l−k ‖u‖ 2l‖v‖0. (6.17)

Proof. For l > k+ 1, we fix a triangle T ∈ Tk and prove the local estimate

a(u, v)|T ≤ C (
1√
2
)l−k |u|1;T 2l‖v‖0;T . (6.18)

This estimate implies the global estimate (6.17). The basic idea is to split
v into the function v0 ∈ Sl given by

v0(x) =

{
v(x) , x ∈ Nl ∩ ∂T
0 , x ∈ Nl \ ∂T

and into v1 = v − v0. Then the inner product a(u, v)|T can be written as

a(u, v)|T = a(u, v0)|T + a(u, v1)|T .
The essential point is that v1 vanishes on the boundary of T . Therefore we
obtain, by partial integration and the product rule,

a(u, v1)|T = −
2∑

i,j=1

∫

T
DjaijDiu v1 dx −

2∑

i,j=1

∫

T
aijDjDiu v1 dx. (6.19)

As u is linear on T , the second term on the right-hand side of the equation
(6.19) vanishes. Assuming T ⊆ T ′ ∈ T0 and

|(Djaij)(x)| ≤M1diam(T′)
−1
, x ∈ T ′,

the first term on the right-hand side of equation (6.19) and therefore a(u, v1)
can be estimated to be

a(u, v1)|T ≤ c1|u|1;T ‖v1‖0;T . (6.20)

The function v0 vanishes outside a boundary strip S of T with

area(S)

area(T )
= 1− (1− 3(12)

l−k)2 ≤ 6(12)
l−k.
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Therefore

a(u, v0)|T ≤M |u|1;S |v0|1;S .
As the restriction of u to T is linear,

|u|21,2;S = area(S)|u|21,∞;T =
area(S)

area(T )
|u|21,2;T .

Utilizing the inverse inequality

|v0|1;S ≤ c22
l‖v0‖0;S ,

the inner product a(u, v0)|T can be estimated to be

a(u, v0)|T ≤ c3(
1√
2
)l−k|u|1;T 2l‖v0‖0;S . (6.21)

We remark that the factor 2l enters because we normalized the L2-like norm
‖ · ‖0;T according to (2.12) by the areas of the triangles in the initial trian-
gulation. Because

‖v0‖0;S ≤ c4‖v‖0;T , ‖v1‖0;T ≤ c4‖v‖0;T
one obtains the proposition combining (6.20) and (6.21).
For l = k, k + 1, the proposition follows from the usual Cauchy–Schwarz

inequality and the inverse estimate given earlier. 2

As result, every step of the hierarchical basis multigrid method reduces
the energy norm of the error by at least a factor behaving like

1−O(1/j2).
Thus Theorem 5.1 leads to an alternative proof of the main convergence
theorem in Bank et al. (1988) for the special case that the coefficient func-
tions of the differential operator are continuously differentiable. Note that
the diameter of the triangles shrinks by the factor 2−j in the transition from
level 0 to level j. Therefore j grows logarithmically in the gridsize, which
means very slowly. If the subspace corrections are repeated in the reversed
order after every cycle, one gets a symmetrized iterative procedure which
can be accelerated by the conjugate gradient method. Usually the hierarchi-
cal basis multigrid method is applied in this form, so that every step reduces
the error in fact by a factor behaving like

1−O(1/j).
We remark that the fact, that the considered finite element functions are

piecewise linear, is not essential for the Cauchy–Schwarz type inequality
(6.17). With an additional factor 2k on the right-hand side of (6.20) arising
from the the second term on the right-hand side of equation (6.19) and a new
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constant in (6.21), the proof of Lemma 6.1 transfers to the case of higher
order polynomials of fixed degree.
The subspace decomposition needed in the construction and analysis of

the hierarchical basis multigrid method can also be used to derive an alter-
native convergence result for the usual multigrid method. How, is described
in the next section by the example of L2-like decompositions. One finds
that every multigrid cycle reduces the energy norm of the error at least by
a factor behaving like

1−O(1/j2),
as for the hierarchical basis multigrid method. For a symmetrized version
accelerated by the conjugate gradient method, one again obtains a better
reduction factor

1−O(1/j).
Contrary to the asymptotically better estimates derived earlier, these es-

timates (as well as the estimates for the hierarchical basis multigrid method)
do not depend on the regularity of the boundary value problem and are even
independent of jumps of the coefficient functions across the boundaries of
the triangles in the initial triangulation. On the other hand, contrary to the
estimate earlier, they are restricted to two space dimensions.
Without any essential change, the analysis of the hierarchical basis multi-

grid method can be transferred to the case of nonuniformly refined grids.
Utilizing the same splitting of S, one can also analyse multigrid methods
which are based on local smoothing procedures.

7. L2-like subspace decompositions

The best, in a certain sense, subspace decomposition is the orthogonal de-
composition of S into V0 = S0 and the orthogonal complements

Vk = {Qku−Qk−1u |u ∈ S} ⊆ Sk (7.1)

for k = 1, . . . , j. This decomposition has been used for the first time in
the analysis of multigrid methods in Bramble et al. (1991b) and, for the
analysis of closely related additive multilevel methods as discussed in the
next section, in Bramble et al. (1990) and Xu (1989).
The stability (5.2) of this decomposition can be essentially derived from

the error estimate

‖u−Qku‖0 ≤ C12
−k‖u‖, (7.2)

which holds for all functions in H1(Ω). For H2-regular problems, this error
estimate follows from the Aubin–Nitsche Lemma which is also the basis for
the classical proofs in Sections 3 and 4. Here we have less regular boundary
value problems in mind. An elementary proof of (7.2), which does not rely on
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such regularity assumptions and which is based on local quasi-interpolants,
can be found in Yserentant (1990), for example. Utilizing (7.2), one can
show very easily that the discrete norm

|||u|||2 = ‖Q0u‖2 +
j∑

k=1

4k‖Qku−Qk−1u‖20 (7.3)

satisfies the estimate

|||u|||2 ≤ K∗
1 (j + 1)‖u‖2, (7.4)

which contains an additional logarithmic factor compared with (6.10).
Utilizing the equivalence of certain Besov and Sobolev spaces, Oswald

(1990, 1991, 1992) and Dahmen and Kunoth (1992) recently developed a
very general framework to compare norms like (7.3) with Sobolev norms.
Especially, they could improve (7.4) to

|||u|||2 ≤ K1‖u‖2 (7.5)

with a constant K1 neither depending on the number of refinement levels
nor on regularity properties of the boundary value problem. In Bornemann
and Yserentant (1992), a more specialized, but relatively elementary proof
of (7.5) is given. The influence of boundary conditions and nonuniform
refinements is discussed very carefully in this article.
Results, which are related to (7.5), have been proven in Bramble and Pas-

ciak (1991), Xu (1992b), and X. Zhang (1992). These articles are based on
the regularity theory of elliptic equations, although the degree of regularity
finally enters only in the size of the constants.
Supposing again the property (6.6) of the smoothers, (7.5) yields the first

basic assumption (5.2). In addition, with (7.5) (or also with (7.2)) one
obtains

4k‖vk‖20 ≤ C‖vk‖2, vk ∈ Vk, (7.6)

so that, on Vk, the energy norm ‖·‖ induced by the boundary value problem
under consideration is equivalent to the scaled L2-like norm 2k‖ · ‖0.
For the proof of the second basic assumption (5.3), (5.4) of the general

theory in Section 5, we can again utilize Lemma 6.1, i.e.

a(uk, vl) ≤ C(
1√
2
)l−k‖uk‖ 2l‖vl‖0. (7.7)

for k ≤ l and all functions uk ∈ Sk and vl ∈ Sl. With (7.6), one obtains, for
functions vl ∈ Vl, the strengthened Cauchy–Schwarz inequality

a(uk, vl) ≤ Ĉ(
1√
2
)l−k‖uk‖ ‖vl‖. (7.8)
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With (6.6), (7.8) yields the desired Cauchy–Schwarz type inequality (5.3)

a(wk, vl) ≤ C̃(
1√
2
)l−k(Bkwk, wk)

1/2(Blvl, vl)
1/2 (7.9)

for k ≤ l and the functions wk ∈ Wk and vl ∈ Vl.
Thus we have proven the convergence of classical multigrid methods with

a convergence rate

1−O(1)
which does not deteriorate with the number of refinement levels and without
utilizing regularity properties of the boundary value problem.
If the smoothers Bk : Sk → Sk satisfy the stronger and somewhat more

restrictive condition (as compared with the condition (6.6))

c14
k‖uk‖20 ≤ (uk, Bkuk) ≤ c24k‖uk‖20 (7.10)

for all uk ∈ Sk, the proof of the Cauchy–Schwarz type inequality (5.3)
can be based directly on (7.7), and (7.9) holds even for all functions vl ∈
Sl. According to the remark in Section 5, for this case, interestingly the
optimality of the multigrid method does not depend on the order in which
the subspace corrections are performed.
If the coefficient functions of the differential operator in (2.6) are no longer

differentiable, or if the derivatives are large, one can still apply Theorem 5.4
and gets a nearly optimal convergence rate.
For nonuniformly refined grids, one can work with L2-like decompositions

which are based on local projections as introduced in Dahmen and Kunoth
(1992) or Bornemann and Yserentant (1992). Such decompositions can be
analysed on the basis of the equivalence of the energy norm to the discrete
norm (7.3).

8. Additive multilevel methods

Stimulated by the development of domain decomposition and of hierarchical
basis methods, the interest has recently shifted from the recursively defined
classical multilevel algorithms to additive multilevel methods. The most
prominent new example in this class of algorithms is the multilevel nodal
basis method of Bramble, Pasciak and Xu.
A main reason for this development is that additive multilevel algorithms

fit much better to nonuniformly refined grids (as they are absolutely nec-
essary for the solution of complicated real-life problems) because these al-
gorithms allow the use of simpler, more natural data structures. Another
reason is that the higher flexibility of these algorithms simplifies the use of
parallel computers, although this should not be viewed too naively. It is
fair to mention that additive methods usually need slightly more iteration
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steps than their multiplicative counterparts, although the single iteration
step tends to be cheaper.
Additive multilevel methods fall into the class of the additive subspace

correction methods already introduced in Section 2. In the same way, as
the multiplicative subspace correction methods introduced in Section 2 cor-
respond to the Gauß–Seidel method, the additive subspace correction meth-
ods discussed in this section are associated with the Jacobi iteration. In the
notation of Section 2, for given subspaces W0, . . . ,WJ of S and given ap-
proximations Bk, the additive subspace correction method for the solution
of the abstract equation (2.4) is

ũ ← ũ+ α
J∑

k=0

B−1
k Qk(f −Aũ). (8.1)

This means that the single subspace corrections are not applied in a sequen-
tial order but in parallel. The iteration (8.1) can be rewritten as

ũ ← ũ+ αC(f −Aũ) (8.2)

with the approximate inverse

C =
J∑

k=0

B−1
k Qk (8.3)

of the operator A : S → S.
As in the convergence theory for the multiplicative variant, the conver-

gence theory for the additive subspace correction method is based on split-
ting S into subspaces Vk of the spaces Wk. The convergence estimates are
based on two assumptions. The first is again the stability assumption (5.2)
that, for all vk ∈ Vk,

J∑

k=0

(Bkvk, vk) ≤ K1 ‖
J∑

k=0

vk‖2. (8.4)

The second assumption is that there exists a (new) constant K2 with

‖
J∑

k=0

wk‖2 ≤ K2

J∑

k=0

(Bkwk, wk) (8.5)

for all wk ∈ Wk. The assumption (8.5) can be deduced from the Cauchy–
Schwarz type estimate (5.23) which is stronger than the assumption (5.3).
The related condition (5.8)

‖
J∑

k=0

vk‖2 ≤ K2

J∑

k=0

(Bkvk, vk)

for the elements vk ∈ Vk is not sufficient.
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The main result for additive subspace correction methods is a general-
ization of well known theorems from the theory of domain decomposition
methods; see Widlund (1989) and Björstad and Mandel (1991).

Theorem 8.1 The operator C is symmetric and positive definite with
respect to the inner product (2.2) on S. Therefore the eigenvalues λ of the
operator CA are real and positive. They range in the interval

1/K1 ≤ λ ≤ K2. (8.6)

Proof. As the Bk are symmetric operators, one has, for all u, v ∈ S,

(Cu, v) =
J∑

k=0

(B−1
k Qku,Qkv) = (u,Cv)

so that C is symmetric and also positive definite. Let v ∈ S have the
decomposition v =

∑J
k=0 vk with elements vk ∈ Vk. Then, by Lemma 5.2,

‖v‖2 =
J∑

k=0

a(vk, v) =
J∑

k=0

a(vk, Pkv)

≤
√
K1 ‖v‖

( J∑

k=0

a(TkPkv, Pkv)
)1/2

=
√
K1 ‖v‖

( J∑

k=0

a(Tkv, v)
)1/2

where, as in Section 5, Tk = B−1
k QkA. Because

∑J
k=0 Tk = CA, one gets

a(v, v) ≤ K1 a(CAv, v).

Therefore the eigenvalues of CA cannot be less than 1/K1. By the new
assumption (8.5), one obtains, for all v ∈ S,

‖
J∑

k=0

Tkv‖2 ≤ K2

J∑

k=0

(BkTkv, Tkv) = K2

J∑

k=0

a(Tkv, v)

or, again with
∑J
k=0 Tk = CA, the estimate

‖CAv‖2 ≤ K2 a(CAv, v).

Therefore the eigenvalues of CA are not greater than K2. 2

By Theorem 8.1, the iteration (8.2) can be accelerated by the conjugate
gradient method. In fact, additive subspace correction methods are nearly
exclusively used in this way so that the proper choice of the damping pa-
rameter α is no longer a question of practical interest. The quality of C
as a preconditioner for A is essentially described by the spectral condition
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number

κ = κ(C1/2AC1/2) (8.7)

which is defined as the ratio of the maximum and the minimum eigenvalue
of the operator C1/2AC1/2. As this operator is similar to CA, Theorem 8.1
says that

κ ≤ K1K2 (8.8)

is an upper bound for this condition number.
For additive multilevel methods for the solution of finite element equations

like (2.11), the spaces Wk ⊆ S are subspaces of the coarse level spaces
Sk; for the multilevel nodal basis method of Bramble et al. (1990) and Xu
(1989) one has Wk = Sk, and for the hierarchical basis method (Yserentant
1986b, 1990, 1992), the spaces Wk are the hierarchical complements (2.41).
Therefore the multilevel nodal basis method can be seen as the additive
version of the multigrid V -cycle whereas the hierarchical basis method is
the additive version of the hierarchical basis multigrid method.
For both methods, we again require that B0 = A0 and that, for k ≥ 1,

the operators Bk :Wk →Wk satisfy an estimate

c14
k‖wk‖20 ≤ (wk, Bkwk) ≤ c24k‖wk‖20 (8.9)

for all wk ∈ Wk. This is essentially the condition (3.6) which is some-
what more restrictive than the condition (6.6) used in the analysis of the
multiplicative variants. However, remember that simple point Jacobi and
Gauß–Seidel smoothers are covered by (8.9).
Then, for arbitrary subspaces Wk ⊆ Sk, the Cauchy–Schwarz type in-

equality

a(u, v) ≤ C (
1√
2
)l−k ‖u‖ 2l‖v‖0 (8.10)

from Lemma 6.1 for the functions u ∈ Sk and v ∈ Sl, k ≤ l, and (8.9) yield
the new condition (8.5).
The subspaces Vk ⊆ Wk are chosen as for the corresponding multiplicative

schemes. Therefore the stability condition (8.4) has already been derived
in the last section. With Theorem 8.1, we can conclude that the additive
multilevel methods have qualitatively the same convergence behaviour as
their multiplicative counterparts.
In order to exhibit the advantages of additive multilevel methods, the ap-

proximations Bk for the operators Ak should be chosen as simple as possible.
The best possible choice is probably the Jacobi method.
In the following we discuss the realization of the multilevel nodal basis

method in conjunction with the Jacobi method. Let Nk = {x1, . . . , xnk
} be

the set of vertices of the triangles in Tk not lying on the boundary of Ω.

Then Sk is spanned by the nodal basis functions ψ
(k)
i , i = 1, . . . , nk, which
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are defined by

ψ
(k)
i (xl) = δil, xl ∈ Nk. (8.11)

Then, for the given Bk, the operator

C = A−1
0 Q0 +

j∑

k=1

B−1
k Qk (8.12)

can be written as

Cr = A−1
0 Q0r +

j∑

k=1

nk∑

i=1

(r, ψ
(k)
i )

a(ψ
(k)
i , ψ

(k)
i )

ψ
(k)
i . (8.13)

To realize the iteration

ũ ← ũ+ αCr, r = f −Aũ, (8.14)

or its conjugate gradient accelerated version efficiently, the functions ũ and
the residuals r have to be represented differently. We store ũ by the values

ũ(xi), i = 1, . . . , n, (8.15)

whereas r is represented by

(r, ψi), i = 1, . . . , n, (8.16)

where, for simplicity, n = nj and ψi = ψ
(j)
i . The inner products (8.16) are

given by

(r, ψi) = (f, ψi)−
n∑

l=1

a(ψi, ψl)u(xl), (8.17)

so that only the usual residual has to be computed; an explicit representa-

tion of the operator A is not needed. Note that the values (r, ψ
(k)
i ) can be

recursively computed beginning with the values (r, ψi) = (r, ψ
(j)
i ), and that

the summation of the single terms in (8.13) can be formulated as a recursive
process, too. The function

u0 = A−1
0 Q0r ∈ S0 (8.18)

satisfies the relation

a(u0, v) = (r, v), v ∈ S0. (8.19)

To compute u0, therefore one needs only (r, ψ
(0)
i ), i = 1, . . . , n0, but not Q0r

itself, and one has to solve a linear system with the level 0 discretization
matrix.
The appropriate modification of the multilevel nodal basis preconditioner
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to nonuniformly refined grids is

Cr = A−1
0 Q0r +

j∑

k=1

∑

ψ
(k)
i

6=ψ
(k−1)
i

(r, ψ
(k)
i )

a(ψ
(k)
i , ψ

(k)
i )

ψ
(k)
i (8.20)

where the inner sum stands for

∑

ψ
(k)
i

6=ψ
(k−1)
i

=

nk−1∑

i=1

ψ
(k)
i

6=ψ
(k−1)
i

+
nk∑

i=nk−1+1

. (8.21)

Only those basis functions ψ
(k)
i of Sk are still taken into account in the inner

sum which are associated with the new nodes xi, i = nk−1 + 1, . . . , nk, on
the level k and with the neighbours of these nodes. With this modification,
the operation count for the single iteration step (8.14) remains strictly pro-
portional to the number of unknowns independent of the distribution of the
unknowns among the levels.
As the corresponding multigrid methods based on local smoothing proce-

dures, this version of the multilevel nodal basis method can be analysed uti-
lizing the local L2-decompositions introduced in Bornemann and Yserentant
(1992). It turns out that the condition number (8.7) behaves like O(1), as
in a uniform refinement.
The hierarchical basis method goes one step further. In Xu’s formulation

(Xu, 1989) it is given by

Cr = A−1
0 Q0r +

j∑

k=1

nk∑

i=nk−1+1

(r, ψ
(k)
i )

a(ψ
(k)
i , ψ

(k)
i )

ψ
(k)
i . (8.22)

As every term in the double sum can be associated with a node of the final
level, the algorithmic realization of this method becomes extremely simple;
see Yserentant (1986b, 1990).

If we introduce the hierarchical basis functions ψ̂i, i = 1, . . . , n, of S by

ψ̂i = ψ
(0)
i , xi ∈ N0, (8.23)

and by

ψ̂i = ψ
(k)
i , xi ∈ Nk \ Nk−1, (8.24)

the hierarchical basis preconditioner takes the form

Cr = A−1
0 Q0r +

n∑

i=n0+1

(r, ψ̂i)

a(ψ̂i, ψ̂i)
ψ̂i. (8.25)

Thus it is, up to a small block of the dimension n0 of the initial finite element
space S0, Jacobi’s old method, now with respect to the hierarchical basis
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formulation of the discrete elliptic boundary value problem. In this sense,
it is the most simple multigrid method.
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mer. Math. 9, 213–329.
W. Hackbusch (1982), ‘Multi-grid convergence theory’, in Multigrid Methods (W.

Hackbusch and U. Trottenberg, eds), Lecture Notes in Mathematics 960,
Springer (Berlin, Heidelberg, New York).

W. Hackbusch (1985), Multigrid Methods and Applications, Springer (Berlin, Hei-
delberg, New York).

W. Hackbusch (1989a), ‘The frequency decomposition multi-grid algorithm’, in Ro-

bust Multi-Grid Methods, Proceedings Kiel 1988 (W. Hackbusch, ed.). Vieweg
(Braunschweig, Wiesbaden).



Multigrid Convergence Proofs 325

W. Hackbusch (1989b), ‘The frequency decomposition multi-grid method. Part I:
Application to anisotropic equations’, Numer. Math. 56, 229–245.

W. Hackbusch (1991), Iterative Lösung großer schwachbesetzter Systeme, Teubner
(Stuttgart) (English translation in preparation).

W. Hackbusch and A. Reusken (1989), ‘Analysis of a damped nonlinear multilevel
method’, Numer. Math. 55, 225–246.

W. Hackbusch and U. Trottenberg, eds (1982), Multigrid Methods, Proceedings,
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