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Dirichlet's problem is one of  the fundamental boundary 
problems of physics. It appears in electrostatics, heat con- 
duction, and elasticity theory and it can be solved in many 
ways. For the mathematicians of  the nineteenth century it 
was a fruitful challenge that they met with new methods 
and sharper tools. I am going to give a sketch of  the prob- 
lem and its history. 

Dirichlet did most of  his work in number theory and is 
best known for having proved that every arithmetic pro- 
gression a, a + b, a + 2 b , . . .  contains infinitely many primes 
when a and b are relatively prime. In 1855, towards the end 

of  his life, he moved from Berlin to G6ttingen to become 
the successor of Gauss. In Berlin he had lectured on many 
things including the grand subjects of  contemporary 
physics, electricity, and heat conduction. Through one of  
his listeners, Bernhard Riemann, Dirichlet's name became 
attached to a fundamental physical problem. In bare mathe- 
matical terms it can be stated as follows. 2 

h real-valued function u(x) = u ( x  I . . . . .  Xn) from an 
open part ~ of  Rn is said to be harmonic there if Au = 0 
where A = 0~ + . . .  + 02, 0k = O/Oxk, is the Laplace opera- 
tor. Dirichlet's problem: given ~2 and a continuous function 
f o n  the boundary P of  ~2, find u harmonic in ~2 and con- 
tinuous in ~2 U F such that u = f o n  F. When n = 1, the 
harmonic functions are of  the form axl + b, and conversely, 
so that the reader may solve Dirichlet's problem by himself 
when ~2 is an interval on the real axis. But if n > 1 we are 
in deep water. The physical examples that follow indicate 
that the problem is correctly posed in the sense that the 
solution is likely to exist and be uniquely determined by f 
and ~2, at least under some very light restrictions. 

Gravitation and electrostatics 

A gravitational or electric potential in p3,  

u(x) = f Ix - y I- l p(y)dy 

Expanded version of a lecture to a student audience at Lund 
University, Sweden. 
The lack of precision at this point about the smoothness of 
functions and boundaries is intentional Such vagueness was 
the rule in early nineteenth century mathematics (and in text- 
books of not so long ago). Following the historical development, 
precision increases towards the end of the article. 

P. G. L. Dirichlet 

of  a mass or charge with density t9 satisfies Poisson's equa- 
tion 

A u ( x ) = - 4 n p ( x ) ,  

as he proved in 1810. Hence, outside the masses or charges, 
u is harmonic. This can also be seen by differentiating under 
the integral sign and noting that AIx - - y l - 1  = 0 for fixed 
y v~ x. Dirichlet's problem here becomes: find a potential in 
a region outside the masses (or charges in the electric case) 
when its value is known on the boundary of  the region. 
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Heat conduction 

In his book Theorie analytique de la chaleur (1822), Fourier 
devised a mathematical model for the propagation of heat 
in a heat conducting body g2. In this model, the temperature 
is represented by a function u(t, x) of time t and position x 
in ~2 which satisfies the heat equation Otu = Au. In a state 
of  equilibrium, u is independent of  t and hence harmonic. 
Dirichiet's problem becomes: compute the equilibrium tem- 
perature in g2 when its boundary I" has a given time-indepen- 
dent temperature. 

Elastic equilibrium 

Let U(X1, X2) be a smooth function defined in an open 
bounded part ~ of  R 2 and think of the graph o f u  as athin 
elastic membrane in space. Keep u = f  fixed over the bound- 
ary P of g2. The potential energy of  the membrane is sup- 
posed to be proportional to the stretching 

f ((1 + Igrad u(x)12)l/2-1)dxldX2, 
$2 

i.e., the area enlargement from u = constant. For small 
grad u, this is approximately half of the so-called Dirichlet 
integral 

f lg rad  ul2dx. 
I2 

If v, another smooth function, vanishes on F, an integration 
by parts gives 

f(~)lU6qlV + c'}2uO2v)dx = -- f vAuclx 
~2 I2 

so that 

f l grad (u + v)l 2dx = f I grad u l2dx 
~2 ~2 

+ f Igrad v[2dx - 2 fvAudx.  (1) 

If  u is harmonic, the last integral vanishes and we make the 
following observation, called Dirichiet's principle: of  all 
functions w (= u + v) on ~2, equal t o f o n  the boundary F, 
the solution u of  Dirichlet's problem has the least energy 
f a  Igrad wl 2dx. By the laws of mechanics, this means that 
the corresponding membrane is in a state of  equilibrium. 

Poisson and Green 

Before 1825, Poisson had found simple explicit solutions of 
Dirichlet's problem for a ball and a disk. For the ball 
Ixl < R ,  n = 3, 

u(x)  = (47rR) -1  f (R 2 - Ix l2) lx-y l -a f (y)dS(y) ,  
ly[-R (2) 

where dS(y) is the element of  area on the sphere lyl = R. 
For the disk Ixl < R ,  n = 2, 

u(x)=(27rR) -1 f ( R Z - l x l 2 ) l x - y l - 2 f ( y ) d s ( y ) ,  
lyl=n (3) 

where ds(y) is the element of  arc length on the circle 

lyl = R .  
I will not go into Poisson's now obsolete proofs. Instead, 

I shall sketch how Green found an analogue of (2) for gen- 
eral regions. His construction is to be found in his famous 
1828 paper entitled An essay on the application of mathe- 
matical analysis to the theory of  electricity and magnetism, 
where he also proves the well-known Green's formula. 

Green studied electrical potentials in three dimensions, 

V(x) = f Ix -- y l -  1 p(y)dy. 

Integrating the identity with arbitrary u, 

Ix - - y l - l A u ( y )  = divy(lX - y 1 - 1  grad u(y) 

- u(y) grady Ix - y l -  a), 

with respect to y over a bounded region ~ minus a small 
ball around x E ~ and letting the radius of  the ball tend to 
zero, he showed that 

d ix_y l_xdP(y  ) 4rru(x) = -  f i x  - y l - l  Au(y)dy + fu(y)  
~2 F 

-- f i x  -- y1-1 du(y) r ~ dr(y), (4) 

where F is the boundary of  ~2, dF(y) its element of  area, 
and d/dN the interior normal derivative at y (when x is out- 
side of  ~ ,  the right side is zero). I f  u is harmonic, Au = O, 
this formula gives us u in f2 when we know u and du/dN 
on the boundary. Green observed that  if one could find a 
function V(x, y), defined for x, y in gZ and without singular- 
ities there, such that the functions y -~ V(x, y) are harmonic 
and the function for fixed x, 

G(x,y)  = Ix - y1-1 - V ( x , y ) ,  

(now called Green's function for ~2 with pole at x E g2) 
vanishes on P, then the way is open to a solution of Dirich- 
let's problem. For if we do the computat ion leading to (4) 
again, but now with Ix - y [ - 1  replaced by G(x,y), the last 
integral of  (4) vanishes, and if u is harmonic we get 

u(x) = f P(x, y)u(y)dI'(y),  (5) 
F 



where 

P(x, y)  = (47r)- l dG(x, y ) /dN.  (6) 

Poisson's solutions (2) and (3) of  Dirichlet's problem have 
this form and therefore P(x, y )  is called the Poisson kernel 
of  Ft. The problem is now to show that the region g2 has a 
Green's function and that the formula 

u(x) = f P(x, y ) f ( y ) d F ( y )  (7) 

defines a harmonic function in g2, equal t o f o n  P. Green 
found the solution in a physical principle: when electrically 
charged conducting bodies are in electrostatic equilibrium, 
the sum of  the potentials of  all the charges is constant in 
each body. He thought of  space outside f2 as an electric 
conductor with a negative charge -Ox induced by a positive 
unit charge at the point x in ~2. The potential of  the latter 
is y ~ Ix - y 1-1 and, if the potential o f - o x  is y + - V(x, y) ,  
their sum, the equilibrium potential y + G(x, y )  = 
Ix - y1-1 - V ( x ,  y) ,  is positive on ~2 and harmonic there 
except at the point x and vanishes outside ~2. But these are 
just the desired properties. Outside ~2 O I', the potential 
y + G(x, y )  is zero and hence harmonic so that the charge 

Px is concentrated to P. 
If  p(x, x ' )  is the charge density of  Px on I', we have 

V(x, y )  = f l y  - z]-  lp(x ,  z )d r ( z )  
p 

and can write Green's function as 

y + G ( x , y )  = I x - y 1 - 1  - f l y - z l - l p ( x , z ) d P ( z ) .  (8) 
p 

Since G(y, z) = 0 when y is in ~2 and z on I', the first factor 

of  the integrand equals 

ly - z1-1 = f l z  - ~1- lp (y ,  ~)dP(~') 
p 

and an insertion into (8) shows Green's function to be sym- 
metric, i.e., G(y, x)  = G(x, y) .  In particular, all functions 
x ~ G(x, y )  are harmonic in ~2 outside the point y. Hence, 
by (6), the functions x ~ P(x, y )  are harmonic in f~ so that, 
by differentiation under the sign of  integration, the right 
side of  (7) is harmonic there for every continuousf.  

It remains to show that the function u as defined by (7) 
tends to f a t  the boundary of  ~2. To see this, go back to 
Green's function x + G(x, y) .  Using its symmetry, it fol- 
lows that G (x, y)  = 0 when x 4 :y  and when x or y or both are 
on F. Hence, by (6), x ~ P(x, y )  vanishes on F outside o fy .  
Moreover, P(x, y )  >1 0 and, putting u = 1 in (4) we get 

f P(x, y ) d r ( y )  = 1 
p 
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- G=0 

I "  

Green's function y ~ G(x, y) is the equilibrium potential of a unit 
positive charge at x ~ ~2 and an induced negative charge -Ox on the 
boundary P. As x ~ x o E P, Px tends to the unit charge at x 0. 

for all x in g2. Hence, when x ~ x o E P, the charge on F 
with the density y ~ P ( x ,  y )  tends to a unit charge at x0. 

This shows that u(x) ~ f ( X o )  as x ~ Xo. 
The last piece of  this wonderful line of  beautiful argu- 

ments is the proof  that the Poisson kernel P(x, y )  is nothing 
but the density p(x, y)  of  the induced charge Px- This means 

that (7) can be written as 

u(x) = f f ( y ) p ( x ,  y )dP(y ) ,  
I" 

where p has an immediate physical significance. Green 
shows that the potential 

V(y)  = f l y  - x ' l -  lp(x')dr(x') 
r 

of an arbitrary charge density p(x')  on P has the property 
that the sum of  the two normal derivatives of  V at x '  E P, 
both directed away from P, is -4zrp(x').  Applied to (8) 
this shows that (note that y -~ G(x, y )  is zero outside of  ~2) 

p(x, x ')  = (4~)-  ldG(x, x')/dN 

where x is in f2 and x '  is on I" and d /dN is the interior nor- 
real derivative at x' ,  For a ball B �9 ix I < R, there is an ex- 
plicit formula for Green's function 

G ( x , y )  = Ix - y] -1 - R l x l - l l x  * _ y [ - l ,  

where x , y  ~ B  andx*  =R2x/Ix]  2 is the image o f x  under a 
reflection in the sphere Ix[ = R. We see that y ~ G(x, y )  is 
harmonic, that G(x, y)  = 0 when x = x* =~ y ,  and, by a 
simple computation, that G(x, y )  = G(y,  x).  Insertion into 
(6) gives the Poisson kernel 

P(x , y )  = (47rR)-l(R 2 - [x[2)[x _ y [ - 3  
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in accordance with (2). When n = 2, we have to exchange 
the electrostatic for the logarithmic potential, 

V(x) = f log Ix - y I-  1 p(y )dy  

with the property that  AV(x)  = - 2zrp(x). Green's function 
for the disk Ixl < R  is 

G(x ,y)  = logR -1  Ix[ Ix* - y l  Ix - y 1 - 1  

and a computation gives the Poisson kernel 

P(x ,y )  = (27rR)-l(R 2 -- Ixl2)lx _ y [ - 2  

in accordance with (3). 

Gauss 

Gauss' contribution to potential theory is an 1839 paper 
in which he treats the subject from the beginning. Among 
other things he gives strict proofs of Poisson's equation and, 
without knowing Green's work, the basic properties of  the 
derivatives of  potentials of  surface charges. This lucid and 
well-written work got many readers, among them the Eng- 
lish physicists Thomson and Stokes. Both wrote about 
potential theory and through them Green's work became 
known in Germany where it was translated. 

Gauss did not treat Dirichlet's problem but he invented 
an existence proof  for the equilibrium potential  of  a charged 
surface. Let P be a charge on a surface P with density 
p(y)  >~ 0 and let 

V(x) = f i x  - y l -  l p(y)dl~(y) 
P 

be its potential. Gauss introduced a quadratic form in/9, 
namely 

I(p) = f V(x)p(x)dF(x)  
P 

= f f Ix - y 1- I p(x)P(y)dP(x)dF(y) .  
F F  

If  o is another charge, then 

I(p + e) = I (p )  + 2 f V(x)o(x)dP(x)  + I(o). 

Hence the function e --> I (p  + co) has the derivative 

2 f V(x)o(x)dP(x)  (9) 

at e = 0. If/9 is an equilibrium charge, i.e., if V is constant 
on P, this derivative vanishes for every charge o whose total 
mass f a(x)dP(x) is zero. Gauss observed that  this character- 

izes the equilibrium charge: if, among all charges ~> 0 with 
given total mass, I takes its least value for a charge p, then 
its potential  V is constant on F. The proof  is simple. First 
Gauss remarks that if V attains its largest value on P at a 
point x' ,  then p(x')  > 0. (This follows from the maximum 
principle (see below) but Gauss gives a special proof.) If  
now V(x') > V(x") for some point x"  in F, we can get a 
negative derivative (9) by choosing a a of  total mass zero 
such that o(x) < 0 close to x' ,  o(x) > 0 close to x" and 
o(x) = 0 otherwise. This contradiction shows that V is con- 
stant on P. Gauss also shows that the equilibrium charge is 
unique. With this he has given a mathematical proof that  
surfaces have equilibrium potentials. There is just one catch: 
we only have Gauss's word that there is a charge giving I its 
least value. A hundred years later, the proof  was to be made 
rigorous, but just twenty years after it was published Gauss' 
proof  was ripe for criticism. It could have been put forward 
by Weierstrass but he chose an easier target for his attack: 
Dirichlet's principle as it had been used by Riemann. 

RiemarmandWeierstrass 

When n = 2, then A = 40g where 20 = 01 - i02, 2-~ = 01 + 
i02 and therefore the harmonic functions are closely con- 
nected with the analytic ones, complex functions satisfying 
the Cauchy-Riemann differential equation, 

By(x) = 0 (10) 

in open regions. I f f  is analytic, then A f  = 40gf  = A Re f 
+ i A I m f =  0 and hence u = Re f and v=  I m f  are harmonic. 
Writing z = Xl +/x2 enables analytic functions to be thought 
of  as maps z -->f(x) = f (z )  from the complex plane to itself. 
To motivate this and to understand the meaning of (10) we 
observe that  the differential dr(z) = Otf(z)dXl + 02f(z)dx2 
can be written as Of(z)dz + ~f(z)ar~-. Hence, that f i s  analytic 
means in particular that the differential dz --> Of(z)dz of  the 
map z -->f(z) is a linear similarity transformation when 
Of(z) r 0. At such points, the map z ~ f ( z )  is said to be 
conformal. The old term, similar in the least parts, is per- 
haps more expressive. 

The simplest analytic function i s f (z )  = z = x 1 + ix2, giv- 
ing the identity map. Directly from the definition (10) fol- 
lows easily that if f (z) andg(z)  are analytic, so are f (z)  + 
g(z), f (z)g(z) ,  f(z)/g(z),  and f (g(z))  wherever they are de- 
fined. A direct verification shows that log z = loglz I + i arg z 
is analytic for z r 0 and hence logf (z )  is analytic when 
f ( z )  r 0. The theory of analytic functions shows f ( z )  to be 
analytic near Zo = xlo + ix20 if and only i f f ( z )  has a power 
series development around Zo, 

f ( z )  = ~ a , , ( z  - Zo) n, 
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convergent when Iz - z01 is small enough. We shall not need 
this fact but we have to observe, finally, that if f =  u + iv 
with real u and v, then (10) can be written alu(x) = O2v(x), 

0zU(X) = -Ol  v(x) so that dr(x)  = -O2u(x)dxl + ~1 u(x)dx2. 
This means that, apart from an additive constant, an 
analytic function is determined by its real part. 

This short presentation of analytic functions combines 
ideas of Riemann and Weierstrass who, at about the same 
time and independently of each other, created order in what 
was earlier a rather chaotic theory. Riemann's famous 1851 
thesis, Foundations o f  a General Theory o f  the Functions 
o f  a Complex Variable, deals with functions with certain 
desirable properties which, except for a finite number of 
points, are analytic in a given plane region or, more gener- 
ally, on a Riemann surface, i.e., a manifold composed by 
overlapping such regions. Riemann, who had heard Dirich- 
let's lecture in Berlin, found such functions by construct- 
ing their real parts, using variants of Dirichlet's principle 
(the term is Riemann's) now taken as an existence proof: 
among all functions with given values on the boundary of 
a plane region ~2 there is a function u with minimal Dirich- 
let integral. For every e and function v vanishing on the 
boundary of ~2 we then have 

f Igrad (u + ev)12dx ~ f [grad ul2dx 
I2 ~2 

and a comparison with (1) shows that, for all such v, 

f v(x)/Xu(x)dx = 0 
s 

which is possible only when u is harmonic. With such meth- 
ods Riemann proved, among other things, the following 
result called the Riemann mapping theorem. Given an open 
bounded simply connected region ~2 in R 2, there is a con- 
formal bijectionf(z) from g2 to the unit disk Izl < 1 such 
that f (zo) = 0 at a point z0 in ~, given in advance. Now 
f ( z )  = (z - zo)g(z ) where g(z) is analytic and nonzero so that 

- l o g  I f ( z ) l  = l o g  Iz  - z o 1 - 1  - l o g  I g ( z ) l  

is harmonic when z :/: z 0 and vanishes on the boundary of 
~2 where Ig(z)l = I. We recognize here Green's function for 
g2 with its pole at Zo and it is easy to see that if we can con- 
stmct Riemann's mapping function for a region we can also 
solve Dirichlet's problem for it and conversely. 

In spite of his dazzling successes with Dirichlet's principle, 
Riemann did not escape criticism. Nobody doubted his re- 
mits but the validity of Dirichlet's principle became an open 
question. This happened in connection with an increased 
interest around 1860 in the notions of irrational number, 
continuity, and differentiability and the realization that the 
distinction between a minimum and a greatest lower bound 
may be important. This was the beginning of the e-6  period 

that is still with us. The great protagonist of the movement 
was Karl Weierstrass who was a professor in Berlin and sur- 
vived Dirichlet and Riemann by twenty years. In 1872 he 
shocked conservative mathematicians by constructing a 
continuous but nowhere differentiable function. Some years 
earlier he had remarked that Dirichlet's principle needs a 
proof. Already the title of the article, On the so-called 
Dirichlet Principle, indicates doubt. After having recon- 
structed what the deceased Dirichlet had actually said in 
his lectures, Weierstrass establishes that nowhere in Dirich- 
let's assumptions is there a statement to the effect that there 
is a function for which Dirichlet's integral has a least value. 
And he makes the stern conclusion: all that can be said is 
that the integral in question has a greatest lower bound. 
Weierstrass finishes by proving that Dirichlet's principle is 
not valid for a modified Dirichlet integral in one dimen- 
sion, on the surface very similar to the original. 

Schwarz and Neumann 

Two mathematicians in the generation after Riemann found 
existence proofs for Dirichlet's problem without using the 
doubtful Dirichlet principle. One of them was Hermann 
Amandus Schwarz. In his studies of conformal mappings 
he found an explicit formula for the Riemann mapping 
function from regions bounded by polygons and with this 
he solved Dirichlet's problems for such regions. Schwarz 
also made a rather laborious passage to the limit for the 
general case and invented a way of solving Dirichlet's prob- 
lem for the union of two overlapping regions when it can 
be solved for each of them. He was the first to give a rigor- 
ous treatment of Dirichlet's problem for circular disks, 
earlier solved by Poisson. In his paper, Schwarz observes 
that Poisson's formula shows that the solution of Dirichlet's 
problem is infinitely differentiable in the open disk even 
when it is only continuous on the boundary and makes a 
careful study of how the solution behaves at the boundary. 
He emphasizes that the value of the solution at the center is 
the mean of the values at the boundary. From what he says 
explicitly we can put together the following important result. 

Theorem. A harmonic function u in an open region is infi- 
nitely differentiable there and has the mean value property, 

2 n  

u(xl ,  x2) = (2 rr) -1 f u(xl + r cos 0, Xz + r sin O)dO 
0 

for every closed disk [y - x l <~ r in the region. 

With disks and means over disks replaced by spheres 
[y - x [  = r in n dimensions and means over them, this theo- 
rem holds also for harmonic functions in n variables. The 
mean value property, proved and used by Gauss for n = 3, 
shows that a harmonic function in any number of variables 
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must be constant close to any point where it has a local 
maximum. This proves the important maximum principle: 
if a harmonic function assumes its least upper bound inside 
an open region where it is defined, it is constant there when 
the region is connected. This principle and a corresponding 
minimum principle (change u to -u )  give a strikingly simple 
uniqueness proof for solutions of Dirichlet's problem for 
bounded regions: if a harmonic function vanishes on the 
boundary, it cannot be 4:0 inside. 

Carl Neumann, Schwarz's rival, found a completely dif- 
ferent existence proof for Dirichlet's problem. He worked 
with two variables but the method extends to the general 
case. In Green's explicit formula for the solution, 

u(x ) = (2r0-1 f f ( y  )dG(x, y)/dN ds, 
I" 

where y = y(s) ranges over P, s is the arc length and d/dN 
the interior normal derivative at y, Neumann replaced 
Green's function 

G(x,y) = log Ix - y l - l - V ( x , y )  

by its principal part, the logarithmic potential. Putting 

Q(x,y)=(27r) -1 d~lOg Ix - y 1 - 1 ,  y =y(s),  

he tried to find a solution u(x) of Dirichlet's problem of the 
form 

u(x) = f Q(x,y)g(y)ds, 
P 

where g is a function to be determined. The function 
x ~ Q(x, y) is singular as x approaches y ,  but its limit 
Q(x',y) asx tends to a point x '  on P, not equal toy ,  has a 
smooth extension to all of P. Neumann proved that i fx  
tends to any point x '  on F, the integral tends to 

, + r g(x ) y Q(x , y)g(y)ds. 
P 

In this way, Dirichlet's problem was reduced to finding a 
function g such that this expression equals the given func- 
tionf. The equation for g can be written as an integral 
equation, namely 

L 

g(t) + f K(t, s)g(s)ds = f(t),  
o 

where L is the length of F and, for simplicity, we have put 
f(s) = f 0 ' ) ,  g(s) = g(y), and K(t, s) = Q(x', y)  wheny =y(s) 
and x '  =y(t).  In the terminology of the turn of the century, 
this is an integral equation of the second kind for g with the 

kernel K(t, s) (the first kind had no term g(t); the use of  the 
phrase Poisson kernel in connection with (2) and (3) is from 
the same time). We shall write (11) as an equation between 
functions, 

g+Kg=f ,  

where 

L 

(Kg)(t) = f K(t, s)g(s)ds. 
o 

Neumann solved this equation by successive approximations 
go = f ,  gl = f - Kgo,g2 = f - Kgx etc. which we write as 

gn = f  - K f  + K2f  + . . .  + (-1)nKnf, 

a notation only implicit in Neumann's work. If the corre- 
sponding series, the so-called Neumann series, 

f -  K f  + K2f  - K3f + . . . .  

formally analogous to the geometric series (1 - K ) - x  = 
1 - K + K 2 - K 3 + . . . .  converges, it should be a solution 
of (11). Neumann proved that the series converges when 
the region f2 is strictly convex. Since Schwarz had solved 
Dirichlet's problem also for nonconvex regions, this was a 
victory with a sour note. 

In this situation it became natural to study integral equa- 
tions in general and to try to improve their theory beyond 
the Neumann series. Not only Dirichlet's problem could be 
reduced to such an equation. There was also a problem stud- 
ied by Neumann and now named after him: find a function 
harmonic in a given region with a given normal derivative 
at the boundary. In 1900 Fredholrn found a way of dealing 
with integral equations of the type (11). He approximated 
them by systems of linear equations with more and more 
unknowns. When the kernel K(t, s) is continuous, as is the 
case for Dirichlet's problem when the boundary F has a 
continuously differentiable tangent, he could give explicit 
formulas for the solutions analogous to those obtained for 
systems of linear equations from the theory of determinants. 
They show that in several aspects the integral equation (11) 
behaves like a square system of linear equations, for in- 
stance so that if the homogeneous equation g + Kg = 0 has 
the unique solution g = 0, then (11) has a unique solution g 
for every right side f.  For Dirichlet's problem, uniqueness is 
already taken care of and Fredholm could give an existence 
proof free of  artificial assumptions. A few years after Fred- 
holm, Hilbert, in a series of very influential papers, gave an 
abstract turn to the theory of integral equations. Nowadays 
the most important general theorems about the existence 
and uniqueness of solutions of integral equations do not 
depend on explicit formulas. They are part of functional 
analysis, the theory of linear spaces of infinite dimension 
and linear maps between them. 



Rehabilitation of Dirichlet's principle and Green's existence 
p r o o f  - Potential theory 

Weierstrass' criticism of Dirichlet's principle was not left 
unanswered. Poincar6 (1887) and Hilbert (1898) turned it 
into a strict existence proof in two different ways. In both 
cases the boundary of the region is supposed to be suitably 
smooth. Poincar6's method only uses the maximum prin- 
ciple and Poisson's solution for balls. He noted that if u~, 
u2,. �9 solve Dirichlet's problem with boundary values f l ,  
f2,- �9 �9 converging uniformly to a continuous function f,  
then the solutions ul, u2 . . . .  converge uniformly to a solu- 
tion u with boundary value f. One can therefore restrict 
oneself to very well behaved boundary values, e.g., a func- 
tion f which is the restriction to P of a function F which is 
twice continuously differentiable in ~2 u F. If we replace 
this function F by a function F B, equal to F outside of a 
closed ball B in ~2 but harmonic in B and equal to F on the 
boundary of the ball, then the Dirichlet integral of FB is at 
most that ofF. Poincar6 proved that iterations of the opera- 
tion F ~ FB for a suitably chosen infinite sequence of balls 

gives a sequence of functions converging to a solution of 
Dirichlet's problem. Choosing a colorful phrase, he named 
his procedure the method of sweeping out (m6thode du 
balayage). The reason is that the function F can be thought 
of as a harmonic function plus a potential of a mass with the 
density -AF(x)/4zr. Replacing F by FB means that the 
mass inside B that belongs to F is swept out to the bound- 
ary of the ball. The whole process, finally, is the sweeping 
out in steps of the mass belonging to F to the boundary of 
the region ~2. Hilbert, who treated Riemann's variants of 
Dirichlet's principle, made similar adjustments in a minimiz- 
ing sequence for Dirichlet's integral resulting in a convergent 

sequence. 

Using modern functional analysis and the Lebesgue inte- 
gral, it is easy to see that Dirichlet's integral attains its great- 
est lower bound for a function with square integrable deri- 
vatives. Simple arguments prove it to be almost everywhere 
equal to a harmonic function which, under mild regularity 
assumptions on the boundary and the boundary function f ,  
solves Dirichlet's problem. Applied in this manner, Dirichlet's 
principle works in all dimensions, for the equation of mini- 
mal surfaces, and for differential equations of higher order 
than 2, the elliptic ones, which appear for instance in the 
elasticity theory of solids. 

The simplest known proof of the existence of a solution 
to Dirichlet's problem was invented by Perron in the 1920s 
and perfected by F. Riesz. It is a variant of the sweeping 
out method. Perron and Riesz consider continuous func- 
tions v on ~2 which are ~>f on the boundary P and super- 
harmonic on gt, i.e., the mean value over a sphere (in the 
plane a circle) in ~2 is greater than or equal to the value in 
the center. It turns out that the pointwise greatest lower 
bound over this class V of functions, 
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F. Riesz 

u(x) =infv(x)  when v E  V, 

is a solution of Dirichlet's problem for bounded regions with 

a smooth boundary. 
Green's existence proof can also be made rigorous but 

then charges can no longer be defined by their densities. 
Instead one goes directly from physical intuition to a mathe- 
matical model that uses modem integration theory. Charges 
are considered as measures, i.e., functions A ~/a(A) from 
bounded sets in, e.g., R 3 to the real line such that 

~(A) = u(AO + ~(A2) + . . .  

where A 1 UA2 U . . .  is a partition of A, i.e.,A =A1 UA2 U 
� 9  and A i (~ A k = 0 when] v~ k. The sets that are allowed 
are Borel sets which one obtains from the open and closed 
sets by taking countable unions and intersections. When 
/~(A) ~> 0 for allA, we say that the measure is nonnegative, 
written/a/> 0. The support of a measure/2 is the comple- 
ment of the largest open sere  where/l = 0, i.e.,/z(A) = 0 
for every A C E. 

When h is a real continuous (or locally integrable) func- 
tion and/z(A) = fAh(x)dx for open setsA, the measure is 
said to have the density h. Its support is then equal to the 
support of h. Not all measures have densities. To see this, 
take for instance the measure with the mass a v ~ 0 at the 
point Xo defined by/2(A) = a when Xo is in A and #(A) = 0 
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otherwise. Its support is just the single point Xo. A measure 
can also be concentrated to lines and surfaces which means 
that its support is contained in these sets. A closed set is 
said to carry a measure when it contains the support of  the 
measure. 

The integral of  a continuous function f with compact 
support with respect to a measure ~, the Riemann-Stieltjes 
integral 

f f(x)d/a(x), 

is defined as the limit of  the Riemann sums 

Y. f(x~)u(Ak ), 

whereA1 UA 2 t O . . .  is a partition of  R3 and the least 
upper bound of  the diameters of  A1, A2, �9 �9 tends to zero. 
It is easy to see that the integral exists and has the usual 
properties. When/a has a continuous density h, then 

f f(x)d/a(x) = f f (x)h(x)dx 

with an ordinary Riemann integral to the right. When/a = 
/a0 consists of  the mass 1 at the origin, then, clearly, 

f f(x)d/ao(x) =f(o) .  

We observe that if e > 0 and/ae has the continuous density 
h(x/e)c -3 and f h ( x ) d x  = 1, then/ac tends to/a0 as e ~ 0 
in the sense that 

f f(x)d/ae(x) = f f (ex)h(x)dx ~ ~(0) = f .f(x)d/ao(X) 

for every continuous function f with compact support. 
When ~t ~> 0, andf~> 0 is such that f (x)  = limfn(X), 

where fl  ,f2, - - �9 is an increasing sequence of  continuous 
functions with compact supports, the integral o f f  with 
respect to/a is defined by 

f f(x)d/a(x) = lim f fn(x)d/a(x), 

where the integrals on the right increase with n. The integral, 
finite or infinite, does not depend on the sequence f l , . . .  
as long as it increases t o f .  

We can now define the potential of  a measure/a > 0, 
namely 

U(x) = f Ix - y l - l  d/a(x). (12) 

It may be infinite but has certain regularity properties. It is 
continuous from below, i.e., if U(xo) > a, then U(x) > a 
when Ix - xol is small enough, and it is superharmonic 
which means that U(xo) is not less than the mean value of 
U on every sphere S : i x - x o I = r with its center at x o. 
The first assertion is obvious, to prove the second one lets 

/as be a measure on S defined by the property that the 
integral 

Ms(f) = f f(y)aUs(y) 

is the mean o f f  on S, written as fsf(y)ctS(y)/47rr 2 in clas- 
sical notation, where dS(y) is the area element. Its poten- 
tial, the spherical potential 

Vs(y)  : f Ix - y l - l  d/as(X) 

is equal to Ix0 _ y [ - 1  outside of  S and r -1 inside, a result 
of  Newton. To compute Ms(U), use (12) and change the 
order of  the integrations which is allowed because all func- 
tions involved are ~> 0. The result is that 

Ms(U) = f Vs(y)d/a(y) ~ f(xo).  

When U is the potential o f  a measure with a twice con- 
tinuously differentiable density h of  compact support, then 

f lg rad  U(x)12dx = f U(x)A U(x)dx 

= 4n f U(x)h(x)dx 

= 47r f f  Ix - y l - l h ( x ) h ( y ) d x d y  (13) 

for here we are free to integrate by parts. Hence it is natural 
to consider the quadratic form I o f  Gauss, now extended to 
measures and denoted by 

(/a,/a) = f U(x)d/a(x) = f f Ix -yl-ld/a(x)d/a(y), (14) 

as a measure of  the size or the energy of/a, at least when 
/a ~> 0 so that the integral is well defined. In fact, the right 
side can be interpreted as twice the work done by collecting 
the mass (or charge)/a bit by bit from infinitely far away. 
The energy may be infinite (e.g., when the support of/~ 4 0 
is a point) but the energy of  a spherical measure is clearly 
finite. 

When/a, u >~ 0 are two measures with finite energy, then 
their inner product 

(/a, v) = f f Ix - yl-l  d/a(x)dv(y), 

a kind of  mutual energy, is also finite and, as was shown 

by M. Riesz, the energy of  their difference, 

(/a - v ,  0 - v)  = ( /1, /a)  - 2 ( # ,  v)  + (v ,  v)  

is ~ 0 and = 0 only when/a = v. 
We have seen that a sequence of  measures with densities 

>~ 0 can converge to a measure without density. The great 
advantage o f  measures compared to measures with densities, 
simply expressed, is that limits o f  measures/> 0 are also 
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measures ~> 0. For instance, if p l, P2, �9 �9 �9 is a sequence of 
such measures and the numerical sequences 

k ~ f ~s(x)d~k(x) 

converge for every spherical potential, then there is a mea- 
sure p ~> 0 such that 

k ~ oo ~ f f ( x ) d g k ( x )  -~ f f ( x ) d u ( x )  

for every continuous func t ion f  with compact support. 
Measures and their potentials are the precision tools of  

modern potential theory. They provide rigorous mathema- 
tical models of  the electrostatic equilibria whose existence 
Green took for granted and Gauss tried to prove. The two 
theorems below were first proved in the 1930s by de la 
Vall6e Poussin and Frostman. The measures can be thought 
of  as electric charges and the word mass can be read as 
charge. 

Equilibrium with a given total mass (Equilibrium potential). 
Let  F C 113 be a compact set and suppose that F can carry 
measures ca >1 0 with positive and finite energy. Then the 
minimum energy o f  such measures o f  total mass 1, 
co(F) = 1, is attained by a unique co = ~ whose potential 
V(x) = f Ix - y l - l d v ( y )  is constant = Con  F apart f rom a 
small exceptional set on the boundary o f F  where it is < C. 

Forced equilibrium (Induction). Let  g ~ 0 have finite 
energy, let F C 1t 3 be closed and suppose that F can carry 
measures co >~ 0 with finite positive energy. Then the mini- 
mum energy o f  the difference ~t - w is attained for  a 
unique w = rand  i f  U, V are the potentials o f  ll, v, then 
V(x) <. U(x) everywhere and V(x) = U(x) on F apart 

f rom a small exceptional set on the boundary o fF .  

The constant C of  the first theorem has a physical signifi- 
cance: 1/C is the electrostatic capacity o f F .  Here we can 
only give a rough idea of  the exceptional sets. They consist 
of  po in t sy  in F which are irregular in the sense that F N B 
is a very small part of  a ball B with its center at y when its 
radius tends to zero. An isolated point in F is irregular but 
all points on, e.g., an ordinary hypersurface are regular. 
When F is the complement of  a bounded open set ~ whose 
boundary F contains a point y irregular in F ,  there are com- 
plications in Dirichlet's problem for ~2. I f f  is continuous 
on F and u(x) is the function on ~2 given by Perron's method, 
it may happen for certain f that u(x) does not have a limit 
as x tends t o y .  Such complications are inevitable, but the 
situation can be saved. In the 1920s Wiener showed that i f f  
is extended to a continuous function F from ~ ,  ~2 is ap- 
proximated from the inside by regions f2n with regular 
boundaries Fn, and un is the solution of  Dirichlet's problem 
for ~2n, equal to F on Fro, then, as n -> ~ ,  un tends to a 
harmonic function u on ~2, uniquely determined b y f a n d  

called the solution of  the generalized Dirichlet problem. It 
is also the solution one gets directly by Perron's method. 

When the set F of  the forced equilibrium theorem con- 
tains a neighborhood of  infinity and/~ has compact support, 
the potentials U(x) and V(x) are equal for large x so that p 
and v have the same total mass. This is the case when F is 
the complement of  an open bounded set ~2 containing the 
support o fp .  Outside of  ~2, V(x) is harmonic so that v is 
supported by the boundary I ~ o f  ~2. In Poincar6's words, 
v is the result of  sweeping out p onto ['. Following Green, 
we can also think of  - v  as the charge on I', induced by p. 
When # =/.t s is a spherical measure with center x and sup- 
port in ~2, its potential isy -+ Ix - y 1 - 1  outside o f  the sup- 
port, the induced charge - v  = - v x  only depends onx  and the 
difference of  potentials, 

y -+ G ( x , y )  = Ix - y 1 - 1  - f Ix' - y l d u x ( x ' )  

is ~> 0 everywhere, positive and harmonic on ~2 outside of  
x and zero off  ~2 except for a small exceptional set on I', 
empty when I" is regular. This is Green's function in the 
form given by Green but now constructed for arbitrary 
bounded open sets. It will come as no surprise that 

u(x) = f f ( y ) d v x ( y  ) 

is the solution of  Wiener's generalization of  Dirichlet's 
problem. Modern potential theory is the precision instru- 
ment that has given us the probably final analysis of  Dirich- 
let's problem with continuous boundary values. Integration 
theory and the maximum principle also take care o f  the 
situation when the boundary values are measures. But the 
details o f  this and what the story is when the boundary 
values are distributions cannot be told here. 

Generalized potential theory and Dirichlet spaces 

Potential theory uses very few props, just measures p, their 
potentials 

p ~ u(x) = yH(x ,  y ) d # ( y )  

and the energy 

f u(x)dp(x)  = f f H ( x ,  y )dp (x )dp (y )  

where H stands for a kernel. The main results of  the theory 
about equilibrium and induction use only these concepts. 
They are not limited to the classical potentials, Newtonian 
and logarithmic. Frostman proved in the 1930s that the the- 
orems are true also for potentials with the kernel H(x, y )  = 
Ix - y l  a - n ,  0 <c~ < 2, in dimension n > 1 as suggested by 
M. Riesz. After that, other variants have been studied and 
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there are axiomatized potential  theories admitt ing other 
underlying spaces than just  Euclidean ones. 

The most imaginative and at the same time simplest 
axioms for a general potential  theory have been invented 
by Arne Beurling. He combines Dirichlet 's principle with 
what he calls (normal) contractions of  the complex plane ~,  
i.e., maps T: r ~ C which preserve the origin, T(0) = 0, and 

do not  increase distances, I T(Zl) - T(z2)l ~< Izl - z2 I. Such 
contractions are, e.g., z ~ , z  ~ Izl, and z ~ Re z. A fourth, 

and very important  example is the projection T 1 on the 

interval (0, 1) defined by Tl(z)  = min (1, Izl). I t  follows 

from the definition of  a derivative that I(Tu(t))'l<~ lu '( t)  l 
for complex differentiable functions of  one variable. Hence, 
in all dimensions, the Dirichlet integral 

l(u) = f Igrad u(x)12dx 

has the proper ty  that I (Tu)  <-I(u) for all T and u. This is 
Beurling's point  of  departure and allows him to introduce 

potentials wi thout  using kernels. 

The axioms concern a linear space of  generalized poten- 
tials, complex functions from a set X, and a Hilbert  space 
D of  such potentials,  called a Dirichlet space. The norm 
square I lull2 in D is interpreted as the energy of  the poten- 

tial u and i t i s  required that  IITull ~< Ilull for all u and con- 
tractions T. Already the case when X has a finite number 
of  points x,  y . . . .  and D consists of  all complex functions 
from E is very interesting. To have a norm square with the 
required contract ion proper ty ,  just take any positive defi- 
nite sum 

~ b ( x , y ) l u ( x )  - u (y) l  2 + ~c(x ) lu (x ) l  2 

with coefficients b, e >/0 .  The corresponding inner product  
can be written 

(u, v) = ~ a ( x ,  y ) u ( x ) u ( y )  

with summation over x,  y E X and unique coefficients 
a(x, y )  = a(y,  x). Since, by the contract ion proper ty ,  

Ilull ~< Ilull, we must have I1~112 = Ilull 2 which means that 
all a(x, y )  = a(y,  x )  are real. Following (13) we define 
Laplace's operator ,  now with a change of  sign by the formu- 

la 

Au(x) = ~ a(x, y ) u ( y )  

so that 

(u, v) = ~ au(x)-~(x) = ~ u ( x ) ~ v ( x ) .  (15) 

In this context  Dirichlet 's problem becomes: given a real- 
valued function f from a part Y of  X,  find a function u 
such that  u = f on Y and u = 0 outside. This is simply a 
square system of  linear equations and we shall see that the 

contract ion proper ty  gives uniqueness, existence and the 
maximum principle in one stroke. 

Theorem. The class V o f  potentials equal to f on Y has a 
unique element u o f  minimal norm which is also the unique 
solution o f  DMchlet's problem. The maximum principle 
holds, ~ e., all values o f  u lie between the extreme values o f f .  

Proof. Since V i s a  convex part  o f  D, there is a unique u in 
V o f  minimal norm, i.e., I[u[[ z <~ [[u + wl[ 2 for all w vanish- 

ing on Y. Since the elements vanishing on Y form a com- 

plex linear subspace W of  D, the inequality holds if and 

only if  u is orthogonal to W. According to (15) with v = w, 
this proper ty  can be rewritten as Au(x)  = 0 outside of  Y. 

Now, if  in particular, 0 ~<f ~< 1 then T 1V C V so that  

[[ul[ ~ I[ TlU[[. But the contract ion proper ty  gives the op- 
posite inequality and hence TlU = u, i.e., 0 ~< u ~< 1. Let- 

ting f = 0 on Y except at one point  y where f ( y )  = 1, we 
get a solution x ~ Pr(x ,  y )  of  Dirichlet 's problem with 
values between 0 and 1 which is the analogue of  the Poisson 

kernel. Since u(x) = ~ P r ( x ,  y ) f ( y )  is the solution in the 
general case, the proof  is finished. 

This theorem is taken from an article by Beurling and 
Deny (1959) which is completely elementary and has some 
il luminating discussions of  the connections between the 
axioms of  Dirichlet spaces and the fundamental results of  
potential  theory. 
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