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1. Error estimates from an extended space

We consider the continuous problem

(1.1) u ∈ H : a(u, v) = (f, v) ∀v ∈ H = H1
0 (Ω)

with a(v, w) = (∇v,∇w), f ∈ L2(Ω), the L2-scalar product (·, ·) and Ω ∈ R2 with
polygonal boundary. We introduce the energy norm

‖v‖ = a(v, v)1/2.

Suppose T is a conforming triangulation of Ω. Then S denotes the space of con-
tinuous functions that are piecewise affine over T and vanish on ∂Ω. The space S
is spanned by the nodal basis {φP | P ∈ N ∩ Ω}, where N stands for the set of
vertices of T ∈ T , and the continuous piecewise affine functions φP associated with
P ∈ N are characterized by φP (P ′) = δP,P ′ (Kronecker-δ). The resulting finite
element approximation of (1.1) is given by

uS ∈ S : a(uS , v) = (f, v) ∀v ∈ S.

We are interested in the a posteriori control of the energy norm ‖u − uS‖ of the
error u− uS . The error e = u− uS solves the defect equation

e ∈ H : a(e, v) = ρS(v) = (f, v)− a(uS , v) ∀v ∈ H.

The defect equation is approximated by a larger finite element space

Q = S + V.

The solution eQ of the discretized defect equation

eQ ∈ Q : a(eQ, v) = ρS(v) v ∈ Q

satisfies eQ = uQ − uS with

uQ ∈ Q : a(uQ, v) = (f, v) v ∈ Q.

The quantity ‖eQ‖ is our first candidate for an a posteriori error estimate, i.e. for
a lower and upper bound for ‖u− uS‖.

Saturation assumption versus reliability. Utilizing the Galerkin orthogo-
nality

a(u− uQ, v) = 0 ∀v ∈ Q
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and S ⊂ Q, we obtain

(1.2)

‖uQ − uS‖2 = ‖uQ − u+ u− uS‖2

= ‖uQ − u‖2 + ‖u− uS‖2 + 2a(uQ − u, u− uS)

= ‖uQ − u‖2 + ‖u− uS‖2 + 2a(uQ − u, u− uQ)

= ‖u− uS‖2 − ‖uQ − u‖2

This identity immediately implies the lower bound (efficiency)

(1.3) ‖uQ − uS‖ ≤ ‖u− uS‖.

Proposition 1.1. The saturation assumption

(1.4) ‖u− uQ‖ ≤ β‖u− uS‖ with β < 1

is equivalent to the upper bound (reliability)

(1.5) ‖u− uS‖ ≤ C‖uQ − uS‖ with C = 1/(1− β2)1/2.

Proof. The assertion is obtained from (1.2) as follows. Assume (1.4). Then

‖u− uS‖2 = ‖uQ − uS‖2 + ‖uQ − u‖2 ≤ ‖uQ − uS‖2 + β2‖u− uS‖2

implies (1.5).
Assume (1.5). Then

‖uQ − u‖2 = ‖u− uS‖2 − ‖uQ − uS‖2 ≤ (1− 1/C2)‖u− uS‖2

implies (1.4). �

The following principal limitations of (hierarchical) error estimation were first
observed by Bornemann et al. [1].

Proposition 1.2. Assume that the subspace L ⊂ L2(Ω) satisfies

dim L > dim V.

Then there is at least one f ∈ L, f 6= 0, such that uQ = uS .

Proof. Consider the defect operator

D : f =⇒ S⊥, f 7→ eQ = uQ − uS ,

where S⊥ denotes the (energy) orthogonal complement of S in Q. Because of

dim L > dim V ≥ dim S⊥,

the operator D cannot be one-to-one, but must have a nontrivial kernel containing
the desired f 6= 0. �

As a consequence of Proposition 1.2, we can only expect to get reliability up to
additional terms, if f ∈ L2(Ω).
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2. Quadratic extension, hierarchical splitting, and diagonalization

We select the space Q ⊂ H of piecewise quadratic finite elements on T . Let
E denote the set of edges of triangles T ∈ T . Each function v ∈ Q is uniquely
determined by its nodal values in P ∈ NQ = N ∪ {xE | E ∈ E}, where xE stands
for the midpoint of E ∈ E . Now Q can be regarded as a hierarchical extension of
S, i.e.,

(2.6) Q = S + V, V = span {φE | E ∈ E},

involving the quadratic bubble functions φE ∈ Q characterized by φE(P ) = δxE ,P ,
∀P ∈ NQ (Kronecker-δ).

Remark 2.1. Our subsequent analysis carries over to hierarchical extensions as
spanned by other bubble functions. For example, we could as well define φE as the
piecewise linear nodal basis functions associated with the vertices xE ∈ N ′ of the
triangulation T ′ resulting from uniform refinement of T or, equivalently, select Q
to be the space the piecewise linear finite elements on T ′.

Using the uniquely determined splitting v = vS + vV and w = wS + wV of
v, w ∈ Q into vS , wS ∈ S and vV , wV ∈ V, we define the bilinear form

(2.7) aQ(vQ, wQ) = a(vS , wS) +
∑
E∈E

vV(xE)wV(xE)a(φE , φE)

and the associated energy norm

‖v‖Q = aQ(v, v)
1
2

on Q. Note that aQ(·, ·) is resulting from decoupling of S and V and subsequent
diagonalization on V. The norm equivalence

(2.8) aQ(v, v) ∼ a(v, v) ∀v ∈ Q

follows from the estimates

(2.9) ‖vS‖+ ‖vV‖ ∼ ‖v‖, ‖vV‖Q =

(∑
E∈E

vV(xE)2a(φE , φE)

) 1
2

∼ ‖vV‖,

as obtained from related local versions [1, 2]

(2.10) ‖vS‖T + ‖vV‖T ∼ ‖v‖T ,

( ∑
E∈ET

vV(xE)2a(φE , φE)

) 1
2

∼ ‖vV‖T ,

where ET denotes the set of edges of T ∈ T .
It has been shown in [2] that the unique solution eV of the associated variational

equality

(2.11) eV ∈ Q : aQ(εV , v) = ρS(v) ∀v ∈ Q

inherits the norm equivalence (2.8), i.e.,

(2.12) ‖eV‖Q ∼ ‖eQ‖.

The solution eV ∈ V is explicitly given by

(2.13) eV(p) = 0, p ∈ N , eV(xE) =
ρS(φE)

‖φE‖2
E ∈ E .
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Finally, the quantity

(2.14) ‖εV‖Q = η =

(∑
E∈E

η2
E

)1/2

with

(2.15) ηE = |eV(xE)|‖φE‖ =
ρS(φE)

‖φE‖
,

is our a posteriori error estimator. The local quantities η are used as local refinement
indicators.

The estimator η provides a lower bound for ‖e‖, as a consequence of (2.12) and
(1.3).

On the saturation assumption (1.4), η also provides an upper bound as a conse-
quence of Proposition 1.1 and (2.12). In order to avoid the saturation assumption,
we will prove an upper bound directly, up to data oscillation, of course. Using
Proposition 1.1, we then show that small data oscillation implies the saturation
assumption.

3. Global upper bound (reliability)

Green’s formula. After integration by parts on each T ∈ T , the identity
∆uS = 0 on each T yields the representation

(3.16) ρS(v) =

∫
Ω

fv +
∑
E∈E

∫
E

jEv, jE = ∂nuS |T2
− ∂nuS |T1

.

Here, n denotes the unit normal vector on the common edge E = T1 ∩ T2 of two
triangles T1, T2 ∈ T pointing from T1 to T2, and jE ∈ R represents the jump of the
normal flux associated with uS across E.

More residuals. In view of the identity

‖e‖2 = ρS(e)

we will provide an upper bound for ρS(e). To this end, we introduce the following
localization of ρS . Invoking the partition of unity

(3.17)
∑
P∈N

φP = 1 in Ω,

we decompose

(3.18) ρS =
∑
P∈N

ρP

into the local contributions

ρP (v) = ρS(vφP ) =

∫
ωP

fvφP +
∑
E∈EP

∫
E

jEvφP , v ∈ H1(Ω),

where
ωP = supp φP , EP = {E ∈ E | E 3 P},

denote the support of φP and the internal edges emanating from P , respectively.
Note that we have

(3.19) ρP (c) = cρP (1) = cρS(φP ) = 0 ∀P ∈ N ∩ Ω.

for all c ∈ R.
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Local L2-projections. The reduction of the continuous error e = u − uS ∈
H1

0 (Ω), to its approximation eV ∈ V will be performed by local projections [6]

ΠP : H1(Ω)→ QP = span{φP } ∪ VP , VP = span {φE | E ∈ EP }, P ∈ N .

For given v ∈ H1(Ω), the value ΠP v ∈ QP is uniquely defined by the conditions

(3.20)

∫
E

ΠP v =

∫
E

v ∀E ∈ EP and

{∫
ωP

ΠP v =
∫
ωP
v if P ∈ N ∩ Ω,

ΠP v ∈ VP P ∈ N ∩ ∂Ω.

It can be verified by straightforward calculations that the coefficients in the hier-
archical basis representation

(3.21) ΠP v = αP (v)φP +
∑
E∈EP

αE(v)φE

are given by

(3.22) αP (v) =

{
cP (v)
cP (φP ) if P ∈ N ∩ Ω,

0 if P ∈ N ∩ ∂Ω,
αE(v) =

∫
E
v − αP (v)

∫
E
φP∫

E
φE

,

where

cP (v) =

∫
ωP

v −
∑
E∈EP

(∫
E

v
)(∫

ωP

φE

)(∫
E

φE

)−1

.

In particular, cP (φP ) = − 1
6 |ωP |. The following lemma collects some essential

properties of the projections ΠP .

Lemma 3.1. The coefficients in (3.21) satisfy

(3.23) max
Q∈{P}∪EP

|αQ(v)| . h−1
P

(
‖v‖0,ωP

+ hP ‖∇v‖0,ωP

)
and ΠP is stable in the sense that

(3.24) ‖ΠP v‖0,ωP
. ‖v‖0,ωP

+ hP ‖∇v‖0,ωP
.

Proof. In order to show (3.23) and (3.24), we start with∣∣∣ ∫
ωP

v
∣∣∣ . hP ‖v‖0,ωP

,
∣∣∣ ∫
E

v
∣∣∣ ≤ h 1

2

E‖v‖0,E . hP (h−1
P ‖v‖0,ωP

+ ‖∇v‖0,ωP
),

where we have used the Cauchy-Schwarz inequality, the ‘scaled’ trace theorem, and
hE = |E| ≤ hP for E ∈ EP . Inserting these estimates and straightforward bounds
of the integrals of φE and φP in terms of hP into (3.22), we obtain (3.23). Then
(3.24) follows from the triangle inequality, ‖φP ‖0,ωP

≈ hP , and ‖φE‖0,ωP
≈ hP . �

Data oscillation. We define

(3.25) osc(T , f) =

( ∑
P∈N∩Ω

h2
P ‖f − f̄P ‖20,ωP

+
∑

P∈N∩∂Ω

h2
P ‖f‖20,ωP

)1/2

.

where, for any P ∈ N , hP = maxE∈EP |E| is a measure for the diameter of ωP , and

f̄P =
1

|ωp|

∫
ωp

f

is the mean value of f on ωP .
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Theorem 3.2. The upper bound

(3.26) ‖u− uS‖ ≤ C
(∑
E∈E

η2
E + osc(T , f)2

)1/2
holds with ηE defined in (2.14), osc(T , f) defined in (3.25), and a constant C
depending only on the shape regularity of T .

Proof. We use the identity ‖u − uS‖2 = ρS(e) and estimate ρS(e). Using the
decomposition (3.18) we write ρS(e) =

∑
P∈N ρP (e). To derive upper bounds for

the local contributions ρP (e), we distinguish two cases corresponding to the splitting

N = N ∩ Ω ∪ (N ∩ ∂Ω)

which will be addressed in the given order.

Case 1: P ∈ N ∩ Ω. We claim that

(3.27) ρP (e) .
( ∑
E∈EP

ηE + hP ‖f − f̄P ‖0,ωP

)
‖∇e‖0,ωP

.

In order to prove (3.27), we set

w = (e− c)φP , c =
1

|ωP |

∫
ωP

e.

Then, we derive

(3.28)

ρP (e) = ρP (e− c) =

∫
ωP

fw +
∑
E∈EP

∫
E

jEw

=

∫
ωP

fΠPw +
∑
E∈EP

∫
E

jEΠPw +

∫
ωP

f(w −ΠPw)

= ρS(ΠPw) +

∫
ωP

(f − f̄P )(w −ΠPw)

≤
∑
E∈EP

|αE(w)|ηE‖φE‖+ ‖f − f̄P ‖0,ωP
‖w −ΠPw‖0,ωP

from (3.19), the definition (3.20) of ΠP , the fact that jE ∈ R is constant, the
definition (2.15) of ηE , and the Cauchy-Schwarz inequality. Notice that, thanks to
the choice of c in the definition of w and P ∈ Ω, we have

(3.29) ‖w‖0,ωP
≤ ‖e− c‖0,ωP

. hP ‖∇e‖0,ωP

by a Poincaré inequality, cf., e.g., [5]. Utilizing (3.23), ‖φP ‖∞,ωP
≤ 1, ‖∇φP ‖∞,ωP

.
h−1
P , and (3.29), we obtain

(3.30)

|αE(w)| . h−1
P

{
‖w‖0,ωP

+ hP ‖∇w‖0,ωP

}
. h−1

P

{
‖(e− c)φP ‖0,ωP

+ hP ‖∇
(
(e− c)φP

)
‖0,ωP

}
. ‖∇e‖0,ωP

≈ ‖φE‖−1‖∇e‖0,ωP

for all E ∈ EP . In a similar way, we get

(3.31) ‖w −ΠPw‖0,ωP
. ‖w‖0,ωP

+ hP ‖∇w‖0,ωP
. hP ‖∇e‖0,ωP

using (3.24). The desired estimate (3.27) follows by inserting these two inequalities
into (3.28).
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Case 2: P ∈ N ∩ ∂Ω. We claim

(3.32) ρP (e) .
( ∑
E∈EP

ηE + hP ‖f‖0,ωP

)
‖∇e‖0,ωP

.

To prove (3.32), we again start from the inequality

(3.33) ρP (e) ≤
∑
E∈EP

|αE(w)|ηE‖φE‖+ ‖f‖0,ωP
‖w −ΠPw‖0,ωP

,

where this time we set

w = (e− c)φP , c = 0.

There is no freedom in the choice of c, since P 6∈ Ω so that we cannot invoke (3.19).
However, e vanishes at least on one edge of ∂ωP , because P ∈ ∂Ω. Hence, the
generalized Poincaré-Friedrichs inequality [4, Lemma 3.4] can be applied again to
obtain (3.30) and (3.31). Inserting these inequalities into (3.33), we get the desired
bound.

To conclude the proof, we sum the estimates for the two cases over P ∈ N , invoke
the definition of the oscillation term, and apply the Cauchy-Schwarz inequality, to
obtain

‖∇e‖20,Ω = ‖e‖2 = ρS(e) .
(∑
E∈E

η2
E + osc(T , f)2

) 1
2 ‖∇e‖0,Ω.

This concludes the proof. �

4. Small data oscillation implies the saturation assumption

The following simple corollary of Proposition 1.1 and Theorem 3.2 was not no-
ticed by Bornemann et al. [1] but could have been used as a shortcut to the argu-
ments of Dörfler and Nochetto [3].

Proposition 4.1. There is a µ > 0 such that small data oscillation

(4.34) osc(T , f) ≤ µ‖u− uS‖

implies the saturation assumption (1.4).

Proof. Combining Theorem 3.2 with (2.12), we obtain

(4.35) ‖u− uS‖2 ≤ C(‖uQ − uS‖2 + osc(T , f)2)

with some constant C. Inserting (4.34) into (4.35) with µ2 < 1/C, we get (1.5)

with some C̃ > 0. Then (1.4) follows from Prosition 1.1. �

5. Local lower bound (efficiency)

As a consequence of (1.3) and the equivalence (2.12), we immediately get the
global lower bound

‖eV‖2 =
∑
E∈E

η2
E ≤ ‖u− uS‖.

We now show that the local error indicators ηE even provide local lower bounds of
the error.
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Theorem 5.1. Let

ωE = int supp φE , ‖v‖0,ωE
= (

∫
ωE

v2)1/2.

Then

(5.36) |ηE | ≤ ‖∇(u− uS)‖0,ωE
, E ∈ E .

Proof. By definition of ηE and ρS and by the Cauchy-Schwarz inequality, we get

|ηE | = ρS(
φE
‖φE‖

) =

∫
ωE

∇(u− uS),∇(
φE
‖φE‖2

) dx ≤ ‖∇(u− uS)‖0,ωE
.

�
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[6] Q. Zou, A. Veeser, R. Kornhuber, and C. Gräser. Hierarchical error estimates for the energy

functional in obstacle problems. Numer. Math., 117:653–677, 2011.


