- 1. Let $A \in \mathbb{R}^{m \times n}$ have a singular value decomposition $A = U\Lambda V^{\mathrm{T}}$.
 - (a) Show that the squares of the singular values of A are eigenvalues of the symmetric matrices $A^{\mathrm{T}}A \in \mathbb{R}^{n \times n}$ and $AA^{\mathrm{T}} \in \mathbb{R}^{m \times m}$. What are the corresponding eigenvectors? If n > m, what are the remaining n m eigenvalues of $A^{\mathrm{T}}A$? If m > n, what are the remaining m n eigenvalues of AA^{T} ?
 - (b) Verify the identity $\operatorname{Ran}(A)^{\perp} = \operatorname{Ker}(A^{\mathrm{T}})$ using the singular value decomposition.
- 2. Let $A \in \mathbb{R}^{m \times n}$ and recall how the Moore–Penrose pseudoinverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ is defined. Prove (some of) the identities

$$\begin{aligned} A^{\dagger}AA^{\dagger} &= A^{\dagger}, \\ AA^{\dagger}A &= A, \\ (A^{\dagger}A)^{\mathrm{T}} &= A^{\dagger}A \\ (AA^{\dagger})^{\mathrm{T}} &= AA^{\dagger}. \end{aligned}$$

Using these, show that

$$A^{\dagger}A \colon \mathbb{R}^n \to \operatorname{Ker}(A)^{\perp},$$

 $AA^{\dagger} \colon \mathbb{R}^m \to \operatorname{Ran}(A)$

are orthogonal projections.

3. Consider the matrix equation Ax = y, where $A \in \mathbb{R}^{m \times n}$. The corresponding *least squares problem* is to find a *least squares solution* x_{LS} that minimizes the Euclidean norm of the residual, i.e.,

$$||Ax_{\rm LS} - y|| = \min_{x \in \mathbb{R}^n} ||Ax - y|| = \min_{z \in {\rm Ran}(A)} ||z - y||.$$

(a) Show that $A^{\dagger}y$ is a least squares solution and satisfies the normal equation

$$A^{\mathrm{T}}Ax = A^{\mathrm{T}}y.$$

Why is this solution special?

- (b) Show that $\operatorname{Ker}(A^{\mathrm{T}}A) = \operatorname{Ker}(A)$.
- (c) Use the above results to deduce that $x \in \mathbb{R}^n$ is a least squares solution if and only if it satisfies the normal equation.