Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Monday 2 May, 2022, 12:15

1. Let $A \in \mathbb{R}^{m \times n}$ have a singular value decomposition $A=U \Lambda V^{\mathrm{T}}$.
(a) Show that the squares of the singular values of A are eigenvalues of the symmetric matrices $A^{\mathrm{T}} A \in \mathbb{R}^{n \times n}$ and $A A^{\mathrm{T}} \in \mathbb{R}^{m \times m}$. What are the corresponding eigenvectors? If $n>m$, what are the remaining $n-m$ eigenvalues of $A^{\mathrm{T}} A$? If $m>n$, what are the remaining $m-n$ eigenvalues of $A A^{\mathrm{T}}$?
(b) Verify the identity $\operatorname{Ran}(A)^{\perp}=\operatorname{Ker}\left(A^{\mathrm{T}}\right)$ using the singular value decomposition.
2. Let $A \in \mathbb{R}^{m \times n}$ and recall how the Moore-Penrose pseudoinverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ is defined. Prove (some of) the identities

$$
\begin{aligned}
& A^{\dagger} A A^{\dagger}=A^{\dagger} \\
& A A^{\dagger} A=A \\
& \left(A^{\dagger} A\right)^{\mathrm{T}}=A^{\dagger} A \\
& \left(A A^{\dagger}\right)^{\mathrm{T}}=A A^{\dagger}
\end{aligned}
$$

Using these, show that

$$
\begin{aligned}
& A^{\dagger} A: \mathbb{R}^{n} \rightarrow \operatorname{Ker}(A)^{\perp} \\
& A A^{\dagger}: \mathbb{R}^{m} \rightarrow \operatorname{Ran}(A)
\end{aligned}
$$

are orthogonal projections.
3. Consider the matrix equation $A x=y$, where $A \in \mathbb{R}^{m \times n}$. The corresponding least squares problem is to find a least squares solution x_{LS} that minimizes the Euclidean norm of the residual, i.e.,

$$
\left\|A x_{\mathrm{LS}}-y\right\|=\min _{x \in \mathbb{R}^{n}}\|A x-y\|=\min _{z \in \operatorname{Ran}(A)}\|z-y\| .
$$

(a) Show that $A^{\dagger} y$ is a least squares solution and satisfies the normal equation

$$
A^{\mathrm{T}} A x=A^{\mathrm{T}} y .
$$

Why is this solution special?
(b) Show that $\operatorname{Ker}\left(A^{\mathrm{T}} A\right)=\operatorname{Ker}(A)$.
(c) Use the above results to deduce that $x \in \mathbb{R}^{n}$ is a least squares solution if and only if it satisfies the normal equation.

