Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Monday 23 May, 2022, 12:15

1. Let $B \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite matrix, and assume that $x \in \mathbb{R}^{n}$ is the solution of $B x=w$ for some given $w \in \mathbb{R}^{n}$. If one approximates x using the conjugate gradient method with the initial guess $x_{0} \in \mathbb{R}^{n}$, it is known that the $k^{\text {th }}$ iterate satisfies (you are not required to prove this)

$$
\begin{equation*}
\left\|x-x_{k}\right\|_{B} \leq\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}\left\|x-x_{0}\right\|_{B}, \quad k=1,2, \ldots, \tag{1}
\end{equation*}
$$

where $\|z\|_{B}^{2}=z^{\mathrm{T}} B z$ and $\kappa=\mu_{\max } / \mu_{\text {min }}$ is the condition number of B, i.e., it is the ratio of the largest eigenvalue $\mu_{\max }$ and the smallest eigenvalue $\mu_{\min }$ of B.
(a) Show that $\mu_{\text {min }}^{1 / 2}\|z\| \leq\|z\|_{B} \leq \mu_{\max }^{1 / 2}\|z\|$ for all $z \in \mathbb{R}^{n}$, where $\|\cdot\|$ denotes the standard Euclidean norm in \mathbb{R}^{n}.
(b) Using the result in part (a), derive an error estimate in the standard Euclidean norm induced by (1). That is, derive an estimate for $\left\|x-x_{k}\right\|$ in terms of $\left\|x-x_{0}\right\|$, the condition number κ, and the iteration index k.
(c) Let $A \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^{m}$, and let $x_{\delta} \in \mathbb{R}^{n}$ be a Tikhonov regularized solution to $A x=y$. Consider solving the corresponding normal equation

$$
\left(A^{\mathrm{T}} A+\delta I\right) x=A^{\mathrm{T}} y
$$

with the conjugate gradient method starting from some initial guess $x_{0} \in \mathbb{R}^{n}$. Suppose that $\operatorname{rank}(A)<n$, which is a sound assumption (at least up to the numerical precision) if A corresponds to an inverse/illposed problem. Use part (b) to write an estimate for $\left\|x_{\delta}-x_{k}\right\|$ with the help of the largest singular value of A, i.e., $\lambda_{1}=\|A\|$, the regularization parameter $\delta>0$, the iteration index k, and the initial error $\left\|x_{\delta}-x_{0}\right\|$.
2. Let us revisit the X-ray tomography problem from last week's exercises. On the course's homepage at
http://numerik.mi.fu-berlin.de/wiki/SS_2022/InverseProblems.php
you can download the file week3.mat, which can be imported into MATLAB with the command

load week3 A S N

The file contains a sparse tomography matrix $A \in \mathbb{R}^{4900 \times 10000}$, a noisy sinogram $S \in \mathbb{R}^{70 \times 70}$, and the dimension of the original object $N=100$.
Your task is to reconstruct the object corresponding to the given sinogram S, this time using the conjugate gradient method. First, form the vectorized
sinogram by $y=S(:)$. Then use the conjugate gradient method with the initial guess $x_{0}=0$ to solve the normal equation

$$
A^{\mathrm{T}} A x=A^{\mathrm{T}} y .
$$

Use the Morozov discrepancy principle with

$$
\varepsilon=\sqrt{0.01^{2} \cdot 70^{2}}=0.70
$$

as the stopping rule: terminate the iteration when the norm of the residual corresponding to the original equation is less than ε, i.e., when

$$
\left\|A x_{k}-y\right\| \leq \varepsilon
$$

Visualize the resulting reconstruction after using $X=$ reshape $(x, 100,100)$ to reshape the reconstruction into an image, and plot the value of the residual

$$
f(k):=\left\|A x_{k}-y\right\|
$$

as a function of k. Here, $\left\{x_{k}\right\}$ denote the conjugate gradient iterates. How many iterations does it take to satisfy the Morozov criterion? Visualize also the reconstruction that results from 1000 rounds of conjugate gradient iterations.

