Inverse Problems Sommersemester 2022 Return your written solutions either in person or by email to vesa.kaarnioja@fu-berlin.de by Monday 23 May, 2022, 12:15

1. Let $B \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite matrix, and assume that $x \in \mathbb{R}^n$ is the solution of Bx = w for some given $w \in \mathbb{R}^n$. If one approximates x using the conjugate gradient method with the initial guess $x_0 \in \mathbb{R}^n$, it is known that the k^{th} iterate satisfies (you are not required to prove this)

$$\|x - x_k\|_B \le \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k \|x - x_0\|_B, \quad k = 1, 2, \dots,$$
(1)

where $||z||_B^2 = z^T B z$ and $\kappa = \mu_{\text{max}}/\mu_{\text{min}}$ is the condition number of B, i.e., it is the ratio of the largest eigenvalue μ_{max} and the smallest eigenvalue μ_{min} of B.

- (a) Show that $\mu_{\min}^{1/2} ||z|| \le ||z||_B \le \mu_{\max}^{1/2} ||z||$ for all $z \in \mathbb{R}^n$, where $||\cdot||$ denotes the standard Euclidean norm in \mathbb{R}^n .
- (b) Using the result in part (a), derive an error estimate in the standard Euclidean norm induced by (1). That is, derive an estimate for $||x x_k||$ in terms of $||x x_0||$, the condition number κ , and the iteration index k.
- (c) Let $A \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$, and let $x_{\delta} \in \mathbb{R}^n$ be a Tikhonov regularized solution to Ax = y. Consider solving the corresponding normal equation

$$(A^{\mathrm{T}}A + \delta I)x = A^{\mathrm{T}}y$$

with the conjugate gradient method starting from some initial guess $x_0 \in \mathbb{R}^n$. Suppose that rank(A) < n, which is a sound assumption (at least up to the numerical precision) if A corresponds to an inverse/ill-posed problem. Use part (b) to write an estimate for $||x_{\delta} - x_k||$ with the help of the largest singular value of A, i.e., $\lambda_1 = ||A||$, the regularization parameter $\delta > 0$, the iteration index k, and the initial error $||x_{\delta} - x_0||$.

2. Let us revisit the X-ray tomography problem from last week's exercises. On the course's homepage at

http://numerik.mi.fu-berlin.de/wiki/SS_2022/InverseProblems.php you can download the file week3.mat, which can be imported into MATLAB with the command

load week3 A S N

The file contains a sparse tomography matrix $A \in \mathbb{R}^{4900 \times 10000}$, a noisy sinogram $S \in \mathbb{R}^{70 \times 70}$, and the dimension of the original object N = 100.

Your task is to reconstruct the object corresponding to the given sinogram S, this time using the conjugate gradient method. First, form the vectorized

sinogram by y = S(:). Then use the conjugate gradient method with the initial guess $x_0 = 0$ to solve the normal equation

$$A^{\mathrm{T}}Ax = A^{\mathrm{T}}y.$$

Use the Morozov discrepancy principle with

$$\varepsilon = \sqrt{0.01^2 \cdot 70^2} = 0.70$$

as the stopping rule: terminate the iteration when the norm of the residual corresponding to the *original equation* is less than ε , i.e., when

$$\|Ax_k - y\| \le \varepsilon.$$

Visualize the resulting reconstruction after using X = reshape(x, 100, 100) to reshape the reconstruction into an image, and plot the value of the residual

$$f(k) := \|Ax_k - y\|$$

as a function of k. Here, $\{x_k\}$ denote the conjugate gradient iterates. How many iterations does it take to satisfy the Morozov criterion? Visualize also the reconstruction that results from 1000 rounds of conjugate gradient iterations.