Sommersemester 2022
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Monday 20 June, 2022, 12:15

1. Suppose that our quantity of interest is a function $f:[0,1] \rightarrow \mathbb{R}, f(0)=0$, and we have a priori knowledge that the function f may have a large jump at few places in the interval, but the locations of these places are unknown to us. One way to construct a prior in this case is to consider the finite difference approximation of the derivative of f and assume that it follows an impulse noise probability distribution.
Let $t_{j}=j / d, j \in\{0, \ldots, d\}$, be a discretization of the computational domain and let $x_{j}=f\left(t_{j}\right)$. Let us consider the problem of drawing a sample from the d-dimensional prior density

$$
\pi(x)=\left(\frac{\alpha}{\pi}\right)^{d} \prod_{j=1}^{d} \frac{1}{1+\alpha^{2}\left(x_{j}-x_{j-1}\right)^{2}}, \quad \alpha>0
$$

Define $u=\left(u_{1}, \ldots, u_{d}\right)^{\mathrm{T}}$ by

$$
\begin{equation*}
u_{j}=x_{j}-x_{j-1}, \quad j=1, \ldots, d \tag{1}
\end{equation*}
$$

The new random variable u is distributed according to the d-dimensional Cauchy distribution (without positivity constraint!)

$$
\begin{equation*}
\pi(u)=\left(\frac{\alpha}{\pi}\right)^{d} \prod_{j=1}^{d} \frac{1}{1+\alpha^{2} u_{j}^{2}} \tag{2}
\end{equation*}
$$

The components u_{j} are independent of each other and can be drawn from a univariate Cauchy distribution using inverse transform sampling. Note that the inverse cumulative distribution function corresponding to a univariate Cauchy density (without positivity constraint!) is given by

$$
\Phi^{-1}(t)=\frac{1}{\alpha} \tan \left(\pi\left(t-\frac{1}{2}\right)\right), \quad t \in(0,1) .
$$

Implement the following algorithm in MATLAB:

- Fix $d=1200$, set $\alpha=1$, and define $t=(1: d) ' / d ;$
- Use componentwise inverse transform sampling to draw a realization from the d-dimensional Cauchy distribution (2).
- Note that (1) implies that we can transform the realization back into the original coordinates x via
$x_{1}=u_{1}, x_{2}=u_{1}+u_{2}, x_{3}=u_{1}+u_{2}+u_{3}, \ldots, x_{d}=u_{1}+u_{2}+u_{3}+\cdots+u_{d}$.
In MATLAB, this can be achieved with the command $\mathrm{x}=$ cumsum(u);
- Finally, visualize the sample you obtained using the plot command. Plot the realization as a function over the original spatial mesh t.

2. Let $y \in \mathbb{R}^{2}$ and $x \in \mathbb{R}$ and

$$
y=\binom{2}{1} x+\eta, \quad \eta \sim \mathcal{N}\left(0, \gamma^{2} I_{2}\right)
$$

where $I_{2} \in \mathbb{R}^{2 \times 2}$ is an identity matrix. Suppose the prior distribution is given by $x \sim \mathcal{N}(0,2)$. What is the posterior distribution if we observe $\hat{y}=(12)^{\top}$? What is the posterior variance? What happens to posterior distribution and variance under decreasing noise $(\gamma \downarrow 0)$?
3. Let $A \in \mathbb{R}^{k \times d}, x \in \mathbb{R}^{d}, y, \eta \in \mathbb{R}^{k}$, and consider the linear measurement model with additive noise:

$$
y=A x+\eta
$$

During the lecture, we proved that if x is endowed with a Gaussian prior distribution $\mathcal{N}\left(x_{0}, \Gamma_{\mathrm{pr}}\right)$, the noise η is assumed to have the Gaussian distribution $\mathcal{N}\left(\eta_{0}, \Gamma_{\mathrm{n}}\right)$, and x and η are mutually independent, then the posterior distribution is Gaussian with posterior covariance

$$
\begin{equation*}
\Gamma_{\mathrm{post}}=\left(\Gamma_{\mathrm{pr}}^{-1}+A^{\mathrm{T}} \Gamma_{\mathrm{n}}^{-1} A\right)^{-1} \tag{3}
\end{equation*}
$$

and posterior mean

$$
\begin{equation*}
\mu_{\text {post }}=\Gamma_{\text {post }}\left(A^{\mathrm{T}} \Gamma_{\mathrm{n}}^{-1}\left(y-\eta_{0}\right)+\Gamma_{\mathrm{pr}}^{-1} x_{0}\right) \tag{4}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\Gamma_{\mathrm{post}}=\Gamma_{\mathrm{pr}}-\Gamma_{\mathrm{pr}} A^{\mathrm{T}}\left(A \Gamma_{\mathrm{pr}} A^{\mathrm{T}}+\Gamma_{\mathrm{n}}\right)^{-1} A \Gamma_{\mathrm{pr}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{\text {post }}=x_{0}+\Gamma_{\mathrm{pr}} A^{\mathrm{T}}\left(A \Gamma_{\mathrm{pr}} A^{\mathrm{T}}+\Gamma_{\mathrm{n}}\right)^{-1}\left(y-A x_{0}-\eta_{0}\right) . \tag{6}
\end{equation*}
$$

Hint: Use the Sherman-Morrison-Woodbury formula: for any conformable matrices A, B, C, and D such that A and C are invertible (square) matrices, it holds that

$$
(A+B C D)^{-1}=A^{-1}-A^{-1} B\left(C^{-1}+D A^{-1} B\right)^{-1} D A^{-1}
$$

if $A+B C D$ is invertible (or, equivalently, if $C^{-1}+D A^{-1} B$ is invertible).
Begin by applying the Sherman-Morrison-Woodbury formula on (3); this should yield the formula (5). The formula (6) can then be proved by plugging the formula (5) into (4) and simplifying the resulting expression.

