
Inverse Problems Exercise 7
Sommersemester 2022
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Monday 20 June, 2022, 12:15

1. Suppose that our quantity of interest is a function f : [0, 1] → R, f(0) = 0,
and we have a priori knowledge that the function f may have a large jump
at few places in the interval, but the locations of these places are unknown to
us. One way to construct a prior in this case is to consider the finite difference
approximation of the derivative of f and assume that it follows an impulse
noise probability distribution.

Let tj = j/d, j ∈ {0, . . . , d}, be a discretization of the computational domain
and let xj = f(tj). Let us consider the problem of drawing a sample from the
d-dimensional prior density

π(x) =

(
α

π

)d d∏
j=1

1

1 + α2(xj − xj−1)2
, α > 0.

Define u = (u1, . . . , ud)
T by

uj = xj − xj−1, j = 1, . . . , d. (1)

The new random variable u is distributed according to the d-dimensional
Cauchy distribution (without positivity constraint! )

π(u) =

(
α

π

)d d∏
j=1

1

1 + α2u2j
. (2)

The components uj are independent of each other and can be drawn from a
univariate Cauchy distribution using inverse transform sampling. Note that the
inverse cumulative distribution function corresponding to a univariate Cauchy
density (without positivity constraint! ) is given by

Φ−1(t) =
1

α
tan(π(t− 1

2
)), t ∈ (0, 1).

Implement the following algorithm in MATLAB:

• Fix d = 1200, set α = 1, and define t = (1:d)’/d;

• Use componentwise inverse transform sampling to draw a realization from
the d-dimensional Cauchy distribution (2).

• Note that (1) implies that we can transform the realization back into the
original coordinates x via

x1 = u1, x2 = u1 +u2, x3 = u1 +u2 +u3, . . . , xd = u1 +u2 +u3 + · · ·+ud.

In MATLAB, this can be achieved with the command x = cumsum(u);

• Finally, visualize the sample you obtained using the plot command. Plot
the realization as a function over the original spatial mesh t.



2. Let y ∈ R2 and x ∈ R and

y =

(
2
1

)
x+ η, η ∼ N (0, γ2I2),

where I2 ∈ R2×2 is an identity matrix. Suppose the prior distribution is given
by x ∼ N (0, 2). What is the posterior distribution if we observe ŷ = (1 2)>?
What is the posterior variance? What happens to posterior distribution and
variance under decreasing noise (γ ↓ 0)?

3. Let A ∈ Rk×d, x ∈ Rd, y, η ∈ Rk, and consider the linear measurement model
with additive noise:

y = Ax+ η.

During the lecture, we proved that if x is endowed with a Gaussian prior
distribution N (x0,Γpr), the noise η is assumed to have the Gaussian distri-
bution N (η0,Γn), and x and η are mutually independent, then the posterior
distribution is Gaussian with posterior covariance

Γpost = (Γ−1pr + ATΓ−1n A)−1 (3)

and posterior mean

µpost = Γpost(A
TΓ−1n (y − η0) + Γ−1pr x0). (4)

Prove that

Γpost = Γpr − ΓprA
T(AΓprA

T + Γn)−1AΓpr (5)

and

µpost = x0 + ΓprA
T(AΓprA

T + Γn)−1(y − Ax0 − η0). (6)

Hint: Use the Sherman–Morrison–Woodbury formula: for any conformable ma-
trices A,B,C, and D such that A and C are invertible (square) matrices, it
holds that

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1,

if A+BCD is invertible (or, equivalently, if C−1 +DA−1B is invertible).

Begin by applying the Sherman–Morrison–Woodbury formula on (3); this
should yield the formula (5). The formula (6) can then be proved by plug-
ging the formula (5) into (4) and simplifying the resulting expression.


