Sommersemester 2022
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Monday 4 July, 2022, 12:15

1. Assume that you have a Gaussian posterior distribution

$$
\binom{x_{1}}{x_{2}} \sim \pi^{y} \sim \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{ll}
1 & p \\
p & 1
\end{array}\right)\right) .
$$

(a) Write a Gibbs sampler for the posterior π^{y}. Based on the generated samples, what are the conditional mean estimate of π^{y} and the marginal standard deviations of x_{1} and x_{2} ?
(b) Repeat part (a) for parameter values $p=0.5,0.9,0.99$, and 0.999. How does the degree of correlation between x_{1} and x_{2} affect the performance of the Gibbs sampler?
2. Suppose we have an inverse problem

$$
y=\binom{x_{1}^{2}+x_{2}^{2}}{x_{2}}+\eta
$$

where $y \in \mathbb{R}^{2}, x=\left(x_{1}, x_{2}\right)^{\mathrm{T}} \in \mathbb{R}^{2}$. Let us set the prior $x=z \cdot \mathbf{1}_{[-4,4]^{2}}(z)$, where $z \sim \mathcal{N}\left((0,0)^{\mathrm{T}}, I\right)$,

$$
\mathbf{1}_{B}(z)= \begin{cases}1, & z \in B \\ 0, & \text { otherwise }\end{cases}
$$

and $\eta \sim \mathcal{N}\left(0, \delta^{2} I\right)$ with $\delta=0.1$. Suppose we are given the observation $\bar{y}=$ (7, -2). Implement MCMC with Metropolis-Hastings kernel

$$
x_{k+1} \sim \sqrt{1-\beta^{2}} \cdot x_{k}+\beta \xi, \quad \xi \sim \mathcal{N}(0, I)
$$

for different values of $\beta \in(0,1)$ to sample the posterior density. For each value of β produce 10000 samples and plot them. What do you notice? Also compute for each β the acceptance ratio, i.e., the ratio between accepted jumps and the total length of the chain. Use the origin as initial value.
Using the best choice of β, compute the expectation of the posterior, i.e., the conditional mean estimate

$$
x_{\mathrm{CM}}=\int_{\mathbb{R}^{2}} x \pi^{y}(x) \mathrm{d} x .
$$

