Inverse Problems

Sommersemester 2022

Vesa Kaarnioja
vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik

First lecture, April 25, 2022

Practical matters

- Lectures on Mondays at 10.15-12.00 in T9/046 by Vesa Kaarnioja.
- Exercises on Mondays at 12.15-14.00 in T9/046 by Vesa Kaarnioja starting next week.
- Weekly exercises published after the lecture. Please return your written solutions to Vesa either by email (vesa.kaarnioja@fu-berlin.de) or at the beginning of the exercise session in the following week.
- The course grade is determined as a weighted average of the exercise points (25%) and the course exam (75%).
- 50% completion of all tasks ensures a passing grade, 90% completion of all tasks ensures the best grade.

Course contents

- The first part of the course will cover classical variational regularization methods. We will follow Chapters 1-4 in
- J. Kaipio and E. Somersalo (2005). Statistical and Computational Inverse Problems. Springer, New York, NY.
- Second part of the course will cover Bayesian inverse problems. We will follow the texts
- D. Sanz-Alonso, A. M. Stuart, and A. Taeb (2018). Inverse Problems and Data Assimilation. https://arxiv.org/abs/1810.06191
- J. Kaipio and E. Somersalo (2005). Statistical and Computational Inverse Problems. Springer, New York, NY.
- D. Calvetti and E. Somersalo (2007). Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing. Springer, New York, NY.

What is an inverse problem?

- Forward problem: Given known causes (initial conditions, material properties, other model parameters), determine the effects (data, measurements).
- Inverse problem: Observing the effects (noisy data), recover the cause.

Figure: Computerized tomography (CT)

Figure: Image deblurring (deconvolution)

$$
y=(K * f)(x)=\int_{\mathbb{R}^{2}} K\left(x-x^{\prime}\right) f\left(x^{\prime}\right) \mathrm{d} x^{\prime}
$$

Introduction: What is an inverse problem?

We consider the indirect measurement of an unknown physical quantity $x \in X$. The measurement $y \in Y$ is related to the unknown by a physical or mathematical model

$$
\begin{equation*}
y=F(x) \tag{1}
\end{equation*}
$$

where $F: X \rightarrow Y$ is called the forward mapping.

- Computing y for a given x is called the forward problem.
- Finding x for a given measurement y (the data) is called the inverse problem.

The inverse problem is often ill-posed, making it more difficult than the corresponding direct problem.

A problem is called well-posed (according to Hadamard), if
(a) a solution exists,
(b) the solution is unique, and
(c) the solution depends continuously on the data.

If one or more of these conditions are violated, the problem is called ill-posed.

Some examples of ill-posed inverse problems are X-ray tomography, image deblurring, the inverse heat equation, and electrical impedance tomography (EIT).

The ill-posedness of an inverse problem poses a challenge because usually, errors are present in the measurements. Incorporating these into model (1) in the form of additive noise η leads to a more realistic model

$$
y=F(x)+\eta
$$

The violation of the above conditions leads to various difficulties.

- If condition (a) is violated, i.e., if the image $\operatorname{Ran}(F)$ of F does not cover the whole space Y, then there may not exist a solution to $F(x)=y$ for noisy data $y=F\left(x^{\dagger}\right)+\eta$ created by a ground truth x^{\dagger}, although a solution exists for noise free data $y=F\left(x^{\dagger}\right)$, since η does not need to lie in $\operatorname{Ran}(F)$.
- If condition (c) is violated, then the solution to $F(x)=y$ for noisy data $y=F\left(x^{\dagger}\right)+\eta$ may be far away from the solution for noise free data $y=F\left(x^{\dagger}\right)$, even if F is invertible and the noise η is small, due to the discontinuity of F^{-1}.

Example.

The deblurring (or deconvolution) problem of recovering an input signal x from an observed signal y (possibly contaminated by noise) occurs in many imaging as well as image and signal processing applications. The mathematical model is

$$
y(t)=\underbrace{\int_{-\infty}^{\infty} a(t-s) x(s) \mathrm{d} s}_{=:(a * x)(t)}
$$

where the function a is known as the blurring kernel.
If \hat{a} is "nice", we can use the Fourier transform together with the convolution theorem to solve the problem analytically:

$$
\begin{aligned}
& y(t)=(a * x)(t) \quad \Leftrightarrow \quad \widehat{y}(\xi)=\widehat{a}(\xi) \widehat{x}(\xi) \quad \Leftrightarrow \quad \widehat{x}(\xi)=\frac{\widehat{y}(\xi)}{\widehat{a}(\xi)} \\
& \Leftrightarrow \quad x(t)=\mathcal{F}^{-1}\left\{\begin{array}{c}
\widehat{y} \\
\hat{a}
\end{array}\right\}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{i t \xi} \frac{\widehat{y}(\xi)}{\widehat{a}(\xi)} \mathrm{d} \xi .
\end{aligned}
$$

Let $x_{\text {exact }}$ denote the solution to this problem with exact, noiseless data.

However, if we can only observe noisy measurements, we must consider

$$
y(t)=(a * x)(t)+\eta(t) \quad \Leftrightarrow \quad \widehat{y}(\xi)=\widehat{a}(\xi) \widehat{x}(\xi)+\widehat{\eta}(\xi)
$$

The solution formula from the previous slide gives (in the Fourier side)

$$
\widehat{x}(\xi)=\frac{\widehat{y}(\xi)}{\widehat{a}(\xi)}=\widehat{x}_{\text {exact }}(\xi)+\frac{\widehat{\eta}(\xi)}{\widehat{a}(\xi)}
$$

then we apply the inverse Fourier transform on both sides. However, this reconstruction might not be well-defined and it is typically not stable, i.e., it does not depend continuously on the data y. The kernel a usually decreases exponentially (or has compact support). A typical example is a Gaussian kernel

$$
a(t)=\frac{1}{2 \pi \alpha^{2}} \exp \left(-\frac{t^{2}}{2 \alpha^{2}}\right)
$$

for some $\alpha>0$.

By the Plancherel theorem, $\widehat{a} \in L^{2}(\mathbb{R})$ and

$$
\int_{-\infty}^{\infty}|a(t)|^{2} \mathrm{~d} t=\int_{-\infty}^{\infty}|\hat{a}(\xi)|^{2} \mathrm{~d} \xi
$$

if $a \in L^{2}(\mathbb{R})$. This implies in particular that $\widehat{a}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$. As a consequence, high frequencies $\widehat{\eta}(\xi)$ of the noise get amplified arbitrarily strong in \widehat{x}. Thus, even the presence of small noise can lead to large changes in the reconstruction.

Case study: parallel-beam X-ray tomography

Case study: parallel-beam X-ray tomography

Case study: parallel-beam X-ray tomography

Case study: parallel-beam X-ray tomography

Case study: parallel-beam X-ray tomography

Case study: parallel-beam X-ray tomography

Let us consider the following phantom (botton left), which we use to simulate measurements taken from 60 angles contaminated with 5% Gaussian noise (sinogram on the bottom right). Inverse problem: use the sinogram data (X-ray images taken from the different directions) to reconstruct the internal structure of the physical body (i.e., the phantom).

Technical (but important) note: to avoid the so-called inverse crime, the measurements for the inversion on the following page were generated using a higher resolution phantom.

Formation of a CT sinogram (Samuli Siltanen):
https://www. youtube.com/watch?v=q7Rt_OY_7tU

Reconstructions arg $\min \left\{\|A x-m\|^{2}+\mathcal{R}(x)\right\}$ from noisy measurements m x with some selected penalty terms \mathcal{R} are given immediately below.

Left: reconstruction with total variation regularization. Right: same with Tikhonov regularization.
Some other reconstructions for comparison (and the target phantom).

Left: filtered back projection. Middle: unfiltered back projection. Right: ground truth.

- Successful solution of inverse problems requires specially designed algorithms that can tolerate errors in measured data.
- How to incorporate all possible prior and expert knowledge about the possible solutions when solving inverse problems?
- The statistical approach to inverse problems aims to quantify how uncertainty in the data or model affects the solutions obtained in problems.

Separable Hilbert space

A vector space H is called a real inner product space if there exists a mapping $\langle\cdot, \cdot\rangle: H \times H \rightarrow \mathbb{R}$ satisfying

- $\langle x, y\rangle=\langle y, x\rangle$ for all $x, y \in H$;
- $\left\langle a x_{1}+b x_{2}, y\right\rangle=a\left\langle x_{1}, y\right\rangle+b\left\langle x_{2}, y\right\rangle$ for all $x_{1}, x_{2}, y \in H$ and $a, b \in \mathbb{R}$;
- $\langle x, x\rangle \geq 0$, where equality holds iff $x=0$.

Moreover, H is a Hilbert space if

- H is complete with respect to the norm $\|x\|=\sqrt{\langle x, x\rangle}, x \in H$, and it is said to be separable if, additionally,
- there exists a countable orthonormal basis $\left\{\phi_{n}\right\}$ of H with respect to the inner product $\langle\cdot, \cdot\rangle$, that is,

$$
\left\langle\phi_{j}, \phi_{k}\right\rangle=\delta_{j, k} \quad \text { and } \quad x=\sum_{n}\left\langle x, \phi_{n}\right\rangle \phi_{n} \quad \text { for all } x \in H
$$

Let H_{1} and H_{2} be real Hilbert spaces and let $A: H_{1} \rightarrow H_{2}$ be a continuous linear operator.

Definition

The kernel (or null space) of operator A is defined as

$$
\operatorname{Ker}(A):=\left\{x \in H_{1} \mid A x=0\right\} .
$$

The range (or image) of operator A is defined as

$$
\operatorname{Ran}(A):=\left\{y \in H_{2} \mid y=A x, x \in H_{1}\right\} .
$$

- A linear operator A is continuous if and only if there exists a constant $C>0$ such that $\|A x\| \leq C\|x\|$ for all $x \in H_{1}$.
- There exists a unique adjoint operator $A^{*}: H_{2} \rightarrow H_{1}$ defined by

$$
\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle \quad \text { for all } x \in H_{1}, y \in H_{2}
$$

(This is a consequence of the Riesz representation theorem.)

- $\operatorname{Ker}(A)$ is a closed subspace of H_{1}, and $\operatorname{Ran}(A)$ is a subspace of H_{2}.

Let H be a real Hilbert space.

Definition

Two elements $x, y \in H$ are said to be orthogonal if $\langle x, y\rangle=0$.
Let $X \subset H$ be a subset. The orthogonal complement of X in H is defined as

$$
X^{\perp}:=\{y \in H \mid\langle x, y\rangle=0 \quad \text { for all } x \in X\}
$$

- For any set $X \subset H, X^{\perp}$ is a closed subspace of H and $X \subset\left(X^{\perp}\right)^{\perp}$.
- If X is a non-closed subspace, then $\left(X^{\perp}\right)^{\perp}=\bar{X}$.
- If X is a closed subspace, then $X=\left(X^{\perp}\right)^{\perp}$. In this case, there exists the orthogonal decomposition

$$
H=X \oplus X^{\perp}
$$

which means that every element $y \in H$ can be uniquely represented as

$$
y=x+x^{\perp}, \quad x \in X, x^{\perp} \in X^{\perp}
$$

- If $X \subset H$ is a closed subspace, the mapping $P_{X}: H \rightarrow X, y \mapsto x$, is an orthogonal projection, i.e., $P_{X}^{2}=P_{X}$ and $\operatorname{Ran}\left(P_{X}\right) \perp \operatorname{Ran}\left(I-P_{X}\right)$.

Lemma

Let $X \subset H$ be a closed subspace. The orthogonal projection $P_{X}: H \rightarrow X$ satisfies the following properties:

- P_{X} is linear;
- P_{X} is self-adjoint: $P_{X}^{*}=P_{X}$;
- $\left\|P_{X}\right\|=1$ if $X \neq\{0\}$;
- $I-P_{X}=P_{X \perp}$;
- $\left\|y-P_{X} y\right\| \leq\|y-z\|$ for all $z \in X$;
- $z=P_{X} y$ iff $z \in X$ and $y-z \in X^{\perp}$.

Proposition

Let H_{1} and H_{2} be Hilbert spaces and $A: H_{1} \rightarrow H_{2}$ a continuous linear operator. Then

$$
\begin{aligned}
& H_{1}=\operatorname{Ker}(A) \oplus(\operatorname{Ker}(A))^{\perp}=\operatorname{Ker}(A) \oplus \overline{\operatorname{Ran}\left(A^{*}\right)} \\
& H_{2}=\overline{\operatorname{Ran}(A)} \oplus(\operatorname{Ran}(A))^{\perp}=\overline{\operatorname{Ran}(A)} \oplus \operatorname{Ker}\left(A^{*}\right) .
\end{aligned}
$$

Proof. $H_{1}=\operatorname{Ker}(A) \oplus(\operatorname{Ker}(A))^{\perp}$ and $H_{2}=\overline{\operatorname{Ran}(A)} \oplus(\overline{\operatorname{Ran}(A)})^{\perp}=\overline{\operatorname{Ran}(A)} \oplus(\operatorname{Ran}(A))^{\perp}$ follow immediately from the previous discussion. ${ }^{\dagger}$ The claim

$$
\begin{equation*}
(\operatorname{Ran}(A))^{\perp}=\operatorname{Ker}\left(A^{*}\right) \tag{2}
\end{equation*}
$$

follows immediately by observing that $x \in \operatorname{Ker}\left(A^{*}\right)$ iff

$$
0=\left\langle A^{*} x, y\right\rangle=\langle x, A y\rangle \quad \text { for all } y \in H_{1} .
$$

The claim $(\operatorname{Ker}(A))^{\perp}=\overline{\operatorname{Ran}\left(A^{*}\right)}$ follows by applying (2) with A replaced by A^{*}.
${ }^{\dagger}$ We use the fact that $\bar{X}^{\perp}=X^{\perp}$ for any subspace X of H. The inclusion $\bar{X}^{\perp} \subset X^{\perp}$ is trivial. To see the other direction, let $x \in X^{\perp} \Rightarrow\langle x, y\rangle=0$ for all $y \in X$. Let $z \in \bar{X}$ be arbitrary. We can write $z=\lim _{n \rightarrow \infty} z_{n}$ for a sequence $\left\{z_{n}\right\} \subset X$. Hence, $\langle x, z\rangle=\left\langle x, \lim _{n \rightarrow \infty} z_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle x, z_{n}\right\rangle=0$. Since $z \in \bar{X}$ was arbitrary, $\bar{X}^{\perp}=x^{\perp}$.

Fredholm equation

Let us formalize the problem that we will concentrate on during the first part of the course.

Let H_{1} and H_{2} be separable real Hilbert spaces and let $A: H_{1} \rightarrow H_{2}$ be a compact ${ }^{\dagger}$ linear operator. We are interested in finding $x \in H_{1}$ such that

$$
y=A x
$$

where $y \in H_{2}$ is given.

Examples:

- $H_{1}=H_{2}=L^{2}(a, b)$.
- $H_{1}=\mathbb{R}^{n}, H_{2}=\mathbb{R}^{m}$, and $A \in \mathbb{R}^{m \times n}$.
${ }^{\dagger}$ A continuous (bounded) linear operator $A: H_{1} \rightarrow H_{2}$ between Hilbert spaces H_{1} and H_{2} is said to be compact if the sets $\overline{A(U)} \subset H_{2}$ are compact for every bounded set $U \subset H_{1}$.

Singular value decomposition of a compact operator

Let us assume that H_{1} and H_{2} are separable real Hilbert spaces and let A : $H_{1} \rightarrow H_{2}$ be a compact linear operator.

Then there exist (possibly countably infinite) orthonormal sets of vectors $\left\{v_{n}\right\} \subset H_{1}$ and $\left\{u_{n}\right\} \subset H_{2}$, and a sequence of positive numbers $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \cdots \geq 0$ with $\lim _{n \rightarrow \infty} \lambda_{n}=0$ in the countably infinite case such that

$$
\begin{equation*}
A x=\sum_{n} \lambda_{n}\left\langle x, v_{n}\right\rangle u_{n} \quad \text { for all } x \in H_{1} . \tag{3}
\end{equation*}
$$

In particular,

$$
\overline{\operatorname{Ran}(A)}=\overline{\operatorname{span}\left\{u_{n}\right\}} \quad \text { and } \quad(\operatorname{Ker}(A))^{\perp}=\overline{\operatorname{span}\left\{v_{n}\right\}} .
$$

The system $\left(\lambda_{n}, v_{n}, u_{n}\right)$ is called a singular system of A, and (3) is a singular value decomposition (SVD) of A.

Singular value decomposition of matrices: $H_{1}=\mathbb{R}^{n}$ and $H_{2}=\mathbb{R}^{m}$

Let $H_{1}=\mathbb{R}^{n}$ and $H_{2}=\mathbb{R}^{m}$, meaning that

$$
y=A x
$$

is a matrix equation with $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n}$, and $y \in \mathbb{R}^{m}$.
Since this operator has finite $\operatorname{rank}(\operatorname{rank}(A):=\operatorname{dim} \operatorname{Ran}(A)<\infty)$, we have

$$
A x=\sum_{j=1}^{p} \lambda_{j}\left(x^{\mathrm{T}} v_{j}\right) u_{j}, \quad p:=\operatorname{rank}(A) \leq \min \{n, m\}
$$

where $\left\{v_{j}\right\}_{j=1}^{p} \subset \mathbb{R}^{n}$ and $\left\{u_{j}\right\}_{j=1}^{p} \subset \mathbb{R}^{m}$ are sets of orthonormal vectors and $\left\{\lambda_{j}\right\}_{j=1}^{p}$ are positive numbers such that $\lambda_{j} \geq \lambda_{j+1}$.

It is possible to complete the sequences of (orthonormal) singular vectors $\left\{v_{j}\right\}_{j=1}^{p} \subset \mathbb{R}^{n}$ and $\left\{u_{j}\right\}_{j=1}^{p} \subset \mathbb{R}^{m}$ with complementary orthonormal vectors $\left\{v_{j}\right\}_{j=p+1}^{n}$ and $\left\{u_{j}\right\}_{j=p+1}^{m}$ such that $\left\{v_{j}\right\}_{j=1}^{n}$ forms an orthonormal basis for \mathbb{R}^{n} and $\left\{u_{j}\right\}_{j=1}^{m}$ forms an orthonormal basis for \mathbb{R}^{m}. This can be done, e.g., using the Gram-Schmidt process.

Define the matrices

$$
\begin{gathered}
V=\left[v_{1}, \ldots, v_{n}\right] \in \mathbb{R}^{n \times n}, \\
U=\left[u_{1}, \ldots, u_{m}\right] \in \mathbb{R}^{m \times m} .
\end{gathered}
$$

Due to the orthonormality of $\left\{v_{j}\right\}$ and $\left\{u_{j}\right\}$, the matrices V and U are orthogonal:

$$
V^{\mathrm{T}} V=V V^{\mathrm{T}}=I \quad \text { and } \quad U^{\mathrm{T}} U=U U^{\mathrm{T}}=I
$$

Next, we define the matrix $\Lambda \in \mathbb{R}^{m \times n}$ as follows:

$$
\begin{aligned}
& \Lambda=\left(\begin{array}{lll|l}
\lambda_{1} & & & \\
& \ddots & & O_{m \times(n-m)} \\
& & \lambda_{m} & \\
& \text { if } m<n, \\
\Lambda=\left(\begin{array}{ccc}
\lambda_{1} & & \\
& & \ddots
\end{array}\right. \\
& & \lambda_{n} \\
& O_{(m-n) \times n}
\end{array}\right) \quad \text { if } m>n,
\end{aligned}
$$

and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ if $m=n$.
It is simple to check that

$$
A x=\sum_{j=1}^{p} \lambda_{j} u_{j} v_{j}^{\mathrm{T}} x=U \wedge V^{\mathrm{T}} x \quad \text { for all } x \in \mathbb{R}^{n}
$$

which yields the matrix singular value decomposition (SVD)

$$
A=U \wedge V^{\mathrm{T}}
$$

This is the decomposition MATLAB returns with the command svd.

Note that in the matrix SVD, the singular values $\left\{\lambda_{j}\right\}_{j=1}^{\min \{m, n\}}$ are non-negative and

$$
\begin{aligned}
& \operatorname{Ran}(A)=\operatorname{span}\left\{u_{j} \mid 1 \leq j \leq p\right\} \\
& \operatorname{Ker}(A)=\operatorname{span}\left\{v_{j} \mid p+1 \leq j \leq n\right\}, \\
& (\operatorname{Ran}(A))^{\perp}=\operatorname{span}\left\{u_{j} \mid p+1 \leq j \leq m\right\}, \\
& (\operatorname{Ker}(A))^{\perp}=\operatorname{span}\left\{v_{j} \mid 1 \leq j \leq p\right\},
\end{aligned}
$$

where $p=\operatorname{rank}(A)=\max _{1 \leq k \leq \min \{m, n\}}\left\{k \mid \lambda_{k}>0\right\}$.

Solvability of $y=A x$

Let us assume that H_{1} and H_{2} are separable real Hilbert spaces and let $A: H_{1} \rightarrow H_{2}$ be a compact linear operator. Let $P: H_{2} \rightarrow \operatorname{Ran}(A)$ be an orthogonal projection. This can be represented using the singular system of A as

$$
P y=\sum_{n}\left\langle y, u_{n}\right\rangle u_{n}
$$

Theorem

The equation $y=A x$ has a solution iff

$$
y=P y \quad \text { and } \quad \underbrace{\sum_{n} \frac{1}{\lambda_{n}^{2}}\left|\left\langle y, u_{n}\right\rangle\right|^{2}<\infty}_{\text {"Picard criterion" }} .
$$

In this case, the solution is of the form

$$
x=x_{0}+\sum_{n} \frac{1}{\lambda_{n}}\left\langle y, u_{n}\right\rangle v_{n} \quad \text { for arbitrary } x_{0} \in \operatorname{Ker}(A)
$$

Proof. " \Rightarrow " Suppose that $y=A x$ has a solution $x \in H_{1}$. This implies that $y \in \operatorname{Ran}(A)$ (thus $y=P y$) and, moreover,

$$
\begin{aligned}
& \left\langle y, u_{j}\right\rangle=\left\langle A x, u_{j}\right\rangle=\left\langle x, A^{*} u_{j}\right\rangle=\lambda_{j}\left\langle x, v_{j}\right\rangle \\
& \Rightarrow \sum_{n} \frac{1}{\lambda_{n}^{2}}\left|\left\langle y, u_{n}\right\rangle\right|^{2}=\sum_{n}\left|\left\langle x, v_{n}\right\rangle\right|^{2} \stackrel{\text { Bessel inequ. }}{\leq}\|x\|^{2}<\infty .
\end{aligned}
$$

$" \Leftarrow "$ Next, suppose that $y=P y$ and the Picard criterion hold and define $x:=x_{0}+\sum_{n} \lambda_{n}^{-1}\left\langle y, u_{n}\right\rangle v_{n}$, where $x_{0} \in \operatorname{Ker}(A)$ is arbitrary. We obtain

$$
A x=A x_{0}+\sum_{n} \frac{1}{\lambda_{n}}\left\langle y, u_{n}\right\rangle A v_{n}=\sum_{n}\left\langle y, u_{n}\right\rangle u_{n}=P y=y
$$

Remark. In the above proof, it is helpful to note that if A has the SVD

$$
A x=\sum_{n} \lambda_{n}\left\langle x, v_{n}\right\rangle u_{n}
$$

then its adjoint A^{*} has the SVD

$$
A^{*} y=\sum_{n} \lambda_{n}\left\langle y, u_{n}\right\rangle v_{n}
$$

Note that for any $x \in H_{1}$, we have

$$
\|A x-y\|^{2}=\|A x-P y\|^{2}+\|(I-P) y\|^{2} \geq\|(I-P) y\|^{2} .
$$

Hence, if y has a nonzero component in the subspace orthogonal to the range of A, the equation $A x=y$ cannot be satisfied exactly. Thus, the best we can do is to solve the projected equation

$$
A x=P A x=P y
$$

However, there is in general no guarantee that the Picard criterion

$$
\sum_{n} \frac{1}{\lambda_{n}^{2}}\left|\left\langle P y, u_{n}\right\rangle\right|^{2}<\infty
$$

is satisfied for a general $y \in H_{2}$ if $\operatorname{rank}(A)=\operatorname{dim} \operatorname{Ran}(A)=\infty$.

Truncated singular value decomposition (TSVD)

Let us define a family of finite-dimensional orthogonal projections by

$$
P_{k}: H_{2} \rightarrow \operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}, \quad y \mapsto \sum_{n=1}^{k}\left\langle y, u_{n}\right\rangle u_{n} .
$$

By the orthogonality of $\left\{u_{n}\right\}$,

$$
P\left(P_{k} y\right)=\sum_{n}\left\langle P_{k} y, u_{n}\right\rangle u_{n}=\sum_{n=1}^{k}\left\langle y, u_{n}\right\rangle u_{n}=P_{k} y
$$

and

$$
\sum_{n} \frac{1}{\lambda_{n}^{2}}\left|\left\langle P_{k} y, u_{n}\right\rangle\right|^{2}=\sum_{n=1}^{k} \frac{1}{\lambda_{n}^{2}}\left|\left\langle y, u_{n}\right\rangle\right|^{2}<\infty .
$$

Note that $k \leq \operatorname{rank}(A)$ if $\operatorname{rank}(A)<\infty$.

It follows that the problem

$$
\begin{equation*}
A x=P_{k} y \tag{4}
\end{equation*}
$$

is always solvable. Taking on both sides the inner product with u_{n}, we find that

$$
\lambda_{n}\left\langle x, v_{n}\right\rangle= \begin{cases}\left\langle y, u_{n}\right\rangle, & 1 \leq n \leq k \\ 0, & n>k\end{cases}
$$

Hence the solutions to (4) are given by

$$
x_{k}=x_{0}+\sum_{n} \frac{1}{\lambda_{n}}\left\langle P_{k} y, u_{n}\right\rangle v_{n}=x_{0}+\sum_{n=1}^{k} \frac{1}{\lambda_{n}}\left\langle y, u_{n}\right\rangle v_{n} \in H_{1}
$$

for any $x_{0} \in \operatorname{Ker}(A)$. Observe that since for increasing k,

$$
\left\|A x_{k}-P y\right\|^{2}=\left\|\left(P-P_{k}\right) y\right\|^{2} \xrightarrow{k \rightarrow \infty} 0
$$

the residual of the projected equation can be made arbitrarily small.

Finally, to remove the ambiguity of the sought solution due to the possible noninjectivity of A, we select $x_{0}=0$. This choice minimizes the norm of x_{k} since, by orthogonality,

$$
\left\|x_{k}\right\|^{2}=\left\|x_{0}\right\|^{2}+\sum_{n=1}^{k} \frac{1}{\lambda_{n}^{2}}\left|\left\langle y, u_{n}\right\rangle\right|^{2} .
$$

Definition

Let H_{1} and H_{2} be separable real Hilbert spaces and let $A: H_{1} \rightarrow H_{2}$ be a compact linear operator with a singular system $\left(\lambda_{n}, v_{n}, u_{n}\right)$. By the truncated SVD approximation (TSVD) of the problem $A x=y$, we mean the problem of finding $x \in H_{1}$ such that

$$
A x=P_{k} y, \quad x \perp \operatorname{Ker}(A)
$$

for some $k \geq 1$.
Theorem
The solution to the TSVD problem has a unique solution x_{k}, called the truncated SVD (TSVD) solution, given by

$$
x_{k}=\sum_{n=1}^{k} \frac{1}{\lambda_{n}}\left\langle y, u_{n}\right\rangle v_{n}
$$

The TSVD solution satisfies

$$
\left\|A x_{k}-y\right\|^{2}=\|(I-P) y\|^{2}+\left\|\left(P-P_{k}\right) y\right\|^{2} \xrightarrow{k \rightarrow \infty}\|(I-P) y\|^{2} .
$$

Truncated SVD for a matrix $A \in \mathbb{R}^{m \times n}$

The truncated SVD solution, i.e., solution of

$$
A x=P_{k} y \quad \text { and } \quad x \perp \operatorname{Ker}(A), \quad 1 \leq k \leq p:=\operatorname{rank}(A)
$$

where $P_{k}: \mathbb{R}^{m} \rightarrow \operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}$ is an orthogonal projection, is given by

$$
x_{k}=\sum_{j=1}^{k} \frac{1}{\lambda_{j}}\left\langle y, u_{j}\right\rangle v_{j}=\sum_{j=1}^{k} \frac{1}{\lambda_{j}} v_{j}\left(u_{j}^{\mathrm{T}} y\right)=V \Lambda_{k}^{\dagger} U^{\mathrm{T}} y
$$

where A has the SVD $A=U \wedge V^{\mathrm{T}}$ and we define

$$
\Lambda_{k}^{\dagger}=\left(\begin{array}{ccccccc}
1 / \lambda_{1} & 0 & \cdots & 0 & \cdots & 0 \\
0 & 1 / \lambda_{2} & & & & \vdots \\
\vdots & & \ddots & & & & \\
& & & 1 / \lambda_{k} & & & \\
& & & & 0 & & \\
\vdots & & & & \ddots & \vdots \\
0 & \cdots & & & \cdots & 0
\end{array}\right) \in \mathbb{R}^{n \times m},
$$

where $\lambda_{1} \geq \cdots \geq \lambda_{p}>0$ are the singular values of A (i.e., diagonal of Λ).

Moore-Penrose pseudoinverse

For the largest possible cut-off $k=p=\operatorname{rank}(A)$, the matrix

$$
A^{\dagger}:=A_{p}^{\dagger}=V \wedge_{p}^{\dagger} U^{\mathrm{T}}=: V \wedge^{\dagger} U^{\mathrm{T}}
$$

is called the Moore-Penrose pseudoinverse. It follows from the above that $x^{\dagger}=A^{\dagger} y$ is the solution of the projected (matrix) equation

$$
A x=P y
$$

where $P: \mathbb{R}^{m} \rightarrow \operatorname{Ran}(A)$ is the orthogonal projection.
The solution $x^{\dagger}=A^{\dagger} y$ is called the minimum norm solution of the problem $y=A x$ since

$$
\left\|A^{\dagger} y\right\|=\min \{\|x\|:\|A x-y\|=\|(I-P) y\|\}
$$

where P is the projection onto the range of A. The minimum norm solution is the solution that minimizes the residual error and has the minimum norm.

Since the smallest singular value λ_{p} is extremely small in inverse problems, the use of the pseudoinverse is usually very sensitive to inaccuracies in the data y.

Spectral regularization using TSVD, i.e., discarding singular values below a certain threshold from the forward model, is a simple and popular technique used to render linear problems less ill-posed while improving the noise robustness of the numerical inversion procedure. More on this next week...

