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Practical matters

Lectures on Mondays at 10.15-12.00 in T9/046 by Vesa Kaarnioja.

Exercises on Mondays at 12.15-14.00 in T9/046 by Vesa Kaarnioja
starting next week.

Weekly exercises published after the lecture. Please return your
written solutions to Vesa either by email (vesa.kaarnioja@fu-berlin.de)
or at the beginning of the exercise session in the following week.

The course grade is determined as a weighted average of the exercise
points (25%) and the course exam (75%).

50% completion of all tasks ensures a passing grade, 90% completion
of all tasks ensures the best grade.



Course contents

The first part of the course will cover classical variational
regularization methods. We will follow Chapters 1–4 in

J. Kaipio and E. Somersalo (2005). Statistical and Computational
Inverse Problems. Springer, New York, NY.

Second part of the course will cover Bayesian inverse problems. We
will follow the texts

D. Sanz-Alonso, A. M. Stuart, and A. Taeb (2018). Inverse Problems
and Data Assimilation. https://arxiv.org/abs/1810.06191
J. Kaipio and E. Somersalo (2005). Statistical and Computational
Inverse Problems. Springer, New York, NY.
D. Calvetti and E. Somersalo (2007). Introduction to Bayesian
Scientific Computing: Ten Lectures on Subjective Computing.
Springer, New York, NY.



What is an inverse problem?

Forward problem: Given known causes (initial conditions, material
properties, other model parameters), determine the effects (data,
measurements).

Inverse problem: Observing the effects (noisy data), recover the
cause.
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Figure: Computerized tomography (CT)



Forward problem
−→

Inverse problem
←−
b
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b
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Figure: Image deblurring (deconvolution)

y = (K ∗ f )(x) =

∫
R2

K (x − x ′)f (x ′)dx ′



Introduction: What is an inverse problem?

We consider the indirect measurement of an unknown physical quantity
x ∈ X . The measurement y ∈ Y is related to the unknown by a physical
or mathematical model

y = F (x), (1)

where F : X → Y is called the forward mapping.

Computing y for a given x is called the forward problem.

Finding x for a given measurement y (the data) is called the inverse
problem.

The inverse problem is often ill-posed, making it more difficult than the
corresponding direct problem.



A problem is called well-posed (according to Hadamard), if

(a) a solution exists,

(b) the solution is unique, and

(c) the solution depends continuously on the data.

If one or more of these conditions are violated, the problem is called
ill-posed.

Some examples of ill-posed inverse problems are X-ray tomography, image
deblurring, the inverse heat equation, and electrical impedance
tomography (EIT).

The ill-posedness of an inverse problem poses a challenge because usually,
errors are present in the measurements. Incorporating these into model (1)
in the form of additive noise η leads to a more realistic model

y = F (x) + η.



The violation of the above conditions leads to various difficulties.

If condition (a) is violated, i.e., if the image Ran(F ) of F does not
cover the whole space Y , then there may not exist a solution to
F (x) = y for noisy data y = F (x†) + η created by a ground truth x†,
although a solution exists for noise free data y = F (x†), since η does
not need to lie in Ran(F ).

If condition (c) is violated, then the solution to F (x) = y for noisy
data y = F (x†) + η may be far away from the solution for noise free
data y = F (x†), even if F is invertible and the noise η is small, due to
the discontinuity of F−1.



Example.
The deblurring (or deconvolution) problem of recovering an input signal x
from an observed signal y (possibly contaminated by noise) occurs in
many imaging as well as image and signal processing applications. The
mathematical model is

y(t) =

∫ ∞
−∞

a(t − s)x(s)ds︸ ︷︷ ︸
=:(a∗x)(t)

,

where the function a is known as the blurring kernel.

If â is “nice”, we can use the Fourier transform together with the
convolution theorem to solve the problem analytically:

y(t) = (a ∗ x)(t) ⇔ ŷ(ξ) = â(ξ)x̂(ξ) ⇔ x̂(ξ) =
ŷ(ξ)

â(ξ)

⇔ x(t) = F−1

{
ŷ

â

}
(t) =

1

2π

∫ ∞
−∞

eitξ
ŷ(ξ)

â(ξ)
dξ.

Let xexact denote the solution to this problem with exact, noiseless data.



However, if we can only observe noisy measurements, we must consider

y(t) = (a ∗ x)(t) + η(t) ⇔ ŷ(ξ) = â(ξ)x̂(ξ) + η̂(ξ).

The solution formula from the previous slide gives (in the Fourier side)

x̂(ξ) =
ŷ(ξ)

â(ξ)
= x̂exact(ξ) +

η̂(ξ)

â(ξ)
;

then we apply the inverse Fourier transform on both sides. However, this
reconstruction might not be well-defined and it is typically not stable, i.e.,
it does not depend continuously on the data y . The kernel a usually
decreases exponentially (or has compact support). A typical example is a
Gaussian kernel

a(t) =
1

2πα2
exp

(
− t2

2α2

)
for some α > 0.



By the Plancherel theorem, â ∈ L2(R) and∫ ∞
−∞
|a(t)|2dt =

∫ ∞
−∞
|â(ξ)|2dξ

if a ∈ L2(R). This implies in particular that â(ξ)→ 0 as |ξ| → ∞. As a
consequence, high frequencies η̂(ξ) of the noise get amplified arbitrarily
strong in x̂ . Thus, even the presence of small noise can lead to large
changes in the reconstruction.



Case study: parallel-beam X-ray tomography



Case study: parallel-beam X-ray tomography



Case study: parallel-beam X-ray tomography



Case study: parallel-beam X-ray tomography



Case study: parallel-beam X-ray tomography



Case study: parallel-beam X-ray tomography



Let us consider the following phantom (botton left), which we use to
simulate measurements taken from 60 angles contaminated with 5 %
Gaussian noise (sinogram on the bottom right). Inverse problem: use the
sinogram data (X-ray images taken from the different directions) to
reconstruct the internal structure of the physical body (i.e., the phantom).
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Technical (but important) note: to avoid the so-called inverse crime, the
measurements for the inversion on the following page were generated using
a higher resolution phantom.

Formation of a CT sinogram (Samuli Siltanen):
https://www.youtube.com/watch?v=q7Rt_OY_7tU

https://www.youtube.com/watch?v=q7Rt_OY_7tU


Reconstructions argmin
x
{‖Ax −m‖2 +R(x)} from noisy measurements m

with some selected penalty terms R are given immediately below.
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Left: reconstruction with total variation regularization. Right: same with Tikhonov regularization.

Some other reconstructions for comparison (and the target phantom).
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Left: filtered back projection. Middle: unfiltered back projection. Right: ground truth.



Successful solution of inverse problems requires specially designed
algorithms that can tolerate errors in measured data.

How to incorporate all possible prior and expert knowledge about the
possible solutions when solving inverse problems?

The statistical approach to inverse problems aims to quantify how
uncertainty in the data or model affects the solutions obtained in
problems.



Separable Hilbert space

A vector space H is called a real inner product space if there exists a
mapping 〈·, ·〉 : H × H → R satisfying

〈x , y〉 = 〈y , x〉 for all x , y ∈ H;

〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉 for all x1, x2, y ∈ H and a, b ∈ R;

〈x , x〉 ≥ 0, where equality holds iff x = 0.

Moreover, H is a Hilbert space if

H is complete with respect to the norm ‖x‖ =
√
〈x , x〉, x ∈ H,

and it is said to be separable if, additionally,

there exists a countable orthonormal basis {φn} of H with respect to
the inner product 〈·, ·〉, that is,

〈φj , φk〉 = δj ,k and x =
∑
n

〈x , φn〉φn for all x ∈ H.



Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a continuous
linear operator.

Definition

The kernel (or null space) of operator A is defined as

Ker(A) := {x ∈ H1 | Ax = 0}.

The range (or image) of operator A is defined as

Ran(A) := {y ∈ H2 | y = Ax , x ∈ H1}.

A linear operator A is continuous if and only if there exists a constant
C > 0 such that ‖Ax‖ ≤ C‖x‖ for all x ∈ H1.

There exists a unique adjoint operator A∗ : H2 → H1 defined by

〈Ax , y〉 = 〈x ,A∗y〉 for all x ∈ H1, y ∈ H2.

(This is a consequence of the Riesz representation theorem.)

Ker(A) is a closed subspace of H1, and Ran(A) is a subspace of H2.



Let H be a real Hilbert space.

Definition

Two elements x , y ∈ H are said to be orthogonal if 〈x , y〉 = 0.

Let X ⊂ H be a subset. The orthogonal complement of X in H is defined
as

X⊥ := {y ∈ H | 〈x , y〉 = 0 for all x ∈ X}.

For any set X ⊂ H, X⊥ is a closed subspace of H and X ⊂ (X⊥)⊥.

If X is a non-closed subspace, then (X⊥)⊥ = X .

If X is a closed subspace, then X = (X⊥)⊥. In this case, there exists
the orthogonal decomposition

H = X ⊕ X⊥,

which means that every element y ∈ H can be uniquely represented as

y = x + x⊥, x ∈ X , x⊥ ∈ X⊥.

If X ⊂ H is a closed subspace, the mapping PX : H → X , y 7→ x , is an
orthogonal projection, i.e., P2

X = PX and Ran(PX ) ⊥ Ran(I − PX ).



Lemma

Let X ⊂ H be a closed subspace. The orthogonal projection PX : H → X
satisfies the following properties:

PX is linear;

PX is self-adjoint: P∗X = PX ;

‖PX‖ = 1 if X 6= {0};
I − PX = PX⊥ ;

‖y − PX y‖ ≤ ‖y − z‖ for all z ∈ X ;

z = PX y iff z ∈ X and y − z ∈ X⊥.



Proposition
Let H1 and H2 be Hilbert spaces and A : H1 → H2 a continuous linear
operator. Then

H1 = Ker(A)⊕ (Ker(A))⊥ = Ker(A)⊕ Ran(A∗),

H2 = Ran(A)⊕ (Ran(A))⊥ = Ran(A)⊕Ker(A∗).

Proof. H1 = Ker(A)⊕ (Ker(A))⊥ and
H2 = Ran(A)⊕ (Ran(A))⊥ = Ran(A)⊕ (Ran(A))⊥ follow immediately
from the previous discussion.† The claim

(Ran(A))⊥ = Ker(A∗) (2)

follows immediately by observing that x ∈ Ker(A∗) iff

0 = 〈A∗x , y〉 = 〈x ,Ay〉 for all y ∈ H1.

The claim (Ker(A))⊥ = Ran(A∗) follows by applying (2) with A replaced
by A∗.

†We use the fact that X
⊥

= X⊥ for any subspace X of H. The inclusion X
⊥ ⊂ X⊥ is

trivial. To see the other direction, let x ∈ X⊥ ⇒ 〈x , y〉 = 0 for all y ∈ X . Let z ∈ X be
arbitrary. We can write z = limn→∞ zn for a sequence {zn} ⊂ X . Hence,

〈x , z〉 = 〈x , limn→∞ zn〉 = limn→∞〈x , zn〉 = 0. Since z ∈ X was arbitrary, X
⊥

= X⊥.



Fredholm equation

Let us formalize the problem that we will concentrate on during the first
part of the course.

Let H1 and H2 be separable real Hilbert spaces and let A : H1 → H2 be a
compact† linear operator. We are interested in finding x ∈ H1 such that

y = Ax ,

where y ∈ H2 is given.

Examples:

H1 = H2 = L2(a, b).

H1 = Rn, H2 = Rm, and A ∈ Rm×n.

†A continuous (bounded) linear operator A : H1 → H2 between Hilbert spaces H1 and
H2 is said to be compact if the sets A(U) ⊂ H2 are compact for every bounded set
U ⊂ H1.



Singular value decomposition of a compact operator

Let us assume that H1 and H2 are separable real Hilbert spaces and let
A : H1 → H2 be a compact linear operator.

Then there exist (possibly countably infinite) orthonormal sets of vectors
{vn} ⊂ H1 and {un} ⊂ H2, and a sequence of positive numbers
λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ 0 with limn→∞ λn = 0 in the countably infinite case
such that

Ax =
∑
n

λn〈x , vn〉un for all x ∈ H1. (3)

In particular,

Ran(A) = span{un} and (Ker(A))⊥ = span{vn}.

The system (λn, vn, un) is called a singular system of A, and (3) is a
singular value decomposition (SVD) of A.



Singular value decomposition of matrices: H1 = Rn and
H2 = Rm

Let H1 = Rn and H2 = Rm, meaning that

y = Ax

is a matrix equation with A ∈ Rm×n, x ∈ Rn, and y ∈ Rm.

Since this operator has finite rank (rank(A) := dimRan(A) <∞), we have

Ax =

p∑
j=1

λj(x
Tvj)uj , p := rank(A) ≤ min{n,m},

where {vj}pj=1 ⊂ Rn and {uj}pj=1 ⊂ Rm are sets of orthonormal vectors

and {λj}pj=1 are positive numbers such that λj ≥ λj+1.



It is possible to complete the sequences of (orthonormal) singular vectors
{vj}pj=1 ⊂ Rn and {uj}pj=1 ⊂ Rm with complementary orthonormal vectors
{vj}nj=p+1 and {uj}mj=p+1 such that {vj}nj=1 forms an orthonormal basis for
Rn and {uj}mj=1 forms an orthonormal basis for Rm. This can be done,
e.g., using the Gram–Schmidt process.

Define the matrices

V = [v1, . . . , vn] ∈ Rn×n,

U = [u1, . . . , um] ∈ Rm×m.

Due to the orthonormality of {vj} and {uj}, the matrices V and U are
orthogonal:

VTV = VVT = I and UTU = UUT = I .



Next, we define the matrix Λ ∈ Rm×n as follows:

Λ =

 λ1

. . . Om×(n−m)

λm

 if m < n,

Λ =


λ1

. . .

λn
O(m−n)×n

 if m > n,

and Λ = diag(λ1, . . . , λm) if m = n.

It is simple to check that

Ax =

p∑
j=1

λjujv
T
j x = UΛVTx for all x ∈ Rn,

which yields the matrix singular value decomposition (SVD)

A = UΛVT.

This is the decomposition MATLAB returns with the command svd.



Note that in the matrix SVD, the singular values {λj}
min{m,n}
j=1 are

non-negative and

Ran(A) = span{uj | 1 ≤ j ≤ p},
Ker(A) = span{vj | p + 1 ≤ j ≤ n},
(Ran(A))⊥ = span{uj | p + 1 ≤ j ≤ m},
(Ker(A))⊥ = span{vj | 1 ≤ j ≤ p},

where p = rank(A) = max1≤k≤min{m,n}{k | λk > 0}.



Solvability of y = Ax

Let us assume that H1 and H2 are separable real Hilbert spaces and let
A : H1 → H2 be a compact linear operator. Let P : H2 → Ran(A) be an
orthogonal projection. This can be represented using the singular system
of A as

Py =
∑
n

〈y , un〉un.

Theorem

The equation y = Ax has a solution iff

y = Py and
∑
n

1

λ2
n

|〈y , un〉|2 <∞︸ ︷︷ ︸
“Picard criterion”

.

In this case, the solution is of the form

x = x0 +
∑
n

1

λn
〈y , un〉vn for arbitrary x0 ∈ Ker(A).



Proof. “⇒” Suppose that y = Ax has a solution x ∈ H1. This implies
that y ∈ Ran(A) (thus y = Py) and, moreover,

〈y , uj〉 = 〈Ax , uj〉 = 〈x ,A∗uj〉 = λj〈x , vj〉

⇒
∑
n

1

λ2
n

|〈y , un〉|2 =
∑
n

|〈x , vn〉|2
Bessel inequ.
≤ ‖x‖2 <∞.

“⇐” Next, suppose that y = Py and the Picard criterion hold and define
x := x0 +

∑
n λ
−1
n 〈y , un〉vn, where x0 ∈ Ker(A) is arbitrary. We obtain

Ax = Ax0 +
∑
n

1

λn
〈y , un〉Avn =

∑
n

〈y , un〉un = Py = y .

Remark. In the above proof, it is helpful to note that if A has the SVD

Ax =
∑
n

λn〈x , vn〉un,

then its adjoint A∗ has the SVD

A∗y =
∑
n

λn〈y , un〉vn.



Note that for any x ∈ H1, we have

‖Ax − y‖2 = ‖Ax − Py‖2 + ‖(I − P)y‖2 ≥ ‖(I − P)y‖2.

Hence, if y has a nonzero component in the subspace orthogonal to the
range of A, the equation Ax = y cannot be satisfied exactly. Thus, the
best we can do is to solve the projected equation

Ax = PAx = Py .

However, there is in general no guarantee that the Picard criterion∑
n

1

λ2
n

|〈Py , un〉|2 <∞

is satisfied for a general y ∈ H2 if rank(A) = dimRan(A) =∞.



Truncated singular value decomposition (TSVD)

Let us define a family of finite-dimensional orthogonal projections by

Pk : H2 → span{u1, . . . , uk}, y 7→
k∑

n=1

〈y , un〉un.

By the orthogonality of {un},

P(Pky) =
∑
n

〈Pky , un〉un =
k∑

n=1

〈y , un〉un = Pky

and ∑
n

1

λ2
n

|〈Pky , un〉|2 =
k∑

n=1

1

λ2
n

|〈y , un〉|2 <∞.

Note that k ≤ rank(A) if rank(A) <∞.



It follows that the problem

Ax = Pky (4)

is always solvable. Taking on both sides the inner product with un, we find
that

λn〈x , vn〉 =

{
〈y , un〉, 1 ≤ n ≤ k

0, n > k.

Hence the solutions to (4) are given by

xk = x0 +
∑
n

1

λn
〈Pky , un〉vn = x0 +

k∑
n=1

1

λn
〈y , un〉vn ∈ H1

for any x0 ∈ Ker(A). Observe that since for increasing k ,

‖Axk − Py‖2 = ‖(P − Pk)y‖2 k→∞−−−→ 0,

the residual of the projected equation can be made arbitrarily small.



Finally, to remove the ambiguity of the sought solution due to the possible
noninjectivity of A, we select x0 = 0. This choice minimizes the norm of
xk since, by orthogonality,

‖xk‖2 = ‖x0‖2 +
k∑

n=1

1

λ2
n

|〈y , un〉|2.



Definition
Let H1 and H2 be separable real Hilbert spaces and let A : H1 → H2 be a
compact linear operator with a singular system (λn, vn, un). By the
truncated SVD approximation (TSVD) of the problem Ax = y , we mean
the problem of finding x ∈ H1 such that

Ax = Pky , x ⊥ Ker(A)

for some k ≥ 1.

Theorem

The solution to the TSVD problem has a unique solution xk , called the
truncated SVD (TSVD) solution, given by

xk =
k∑

n=1

1

λn
〈y , un〉vn.

The TSVD solution satisfies

‖Axk − y‖2 = ‖(I − P)y‖2 + ‖(P − Pk)y‖2 k→∞−−−→ ‖(I − P)y‖2.



Truncated SVD for a matrix A ∈ Rm×n

The truncated SVD solution, i.e., solution of

Ax = Pky and x ⊥ Ker(A), 1 ≤ k ≤ p := rank(A),

where Pk : Rm → span{u1, . . . , uk} is an orthogonal projection, is given by

xk =
k∑

j=1

1

λj
〈y , uj〉vj =

k∑
j=1

1

λj
vj(u

T
j y) = VΛ†kU

Ty ,

where A has the SVD A = UΛVT and we define

Λ†k =



1/λ1 0 · · · 0 · · · 0

0 1/λ2

...
...

. . .

1/λk

0
...

. . .
...

0 · · · · · · 0


∈ Rn×m,

where λ1 ≥ · · · ≥ λp > 0 are the singular values of A (i.e., diagonal of Λ).



Moore–Penrose pseudoinverse

For the largest possible cut-off k = p = rank(A), the matrix

A† := A†p = VΛ†pU
T =: VΛ†UT

is called the Moore–Penrose pseudoinverse. It follows from the above that
x† = A†y is the solution of the projected (matrix) equation

Ax = Py ,

where P : Rm → Ran(A) is the orthogonal projection.

The solution x† = A†y is called the minimum norm solution of the
problem y = Ax since

‖A†y‖ = min{‖x‖ : ‖Ax − y‖ = ‖(I − P)y‖},

where P is the projection onto the range of A. The minimum norm
solution is the solution that minimizes the residual error and has the
minimum norm.



Since the smallest singular value λp is extremely small in inverse problems,
the use of the pseudoinverse is usually very sensitive to inaccuracies in the
data y .

Spectral regularization using TSVD, i.e., discarding singular values below a
certain threshold from the forward model, is a simple and popular
technique used to render linear problems less ill-posed while improving the
noise robustness of the numerical inversion procedure. More on this next
week...


