## Inverse Problems

Sommersemester 2022

Vesa Kaarnioja
vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik

Tenth lecture, July 4, 2022

## Today's lecture

- Optimization perspective (chapter 3 in Sanz-Alonso, Stuart, Taeb 2018)
- Gaussian approximation (chapter 4 in Sanz-Alonso, Stuart, Taeb 2018)


## The setting

We work in the inverse problem setting of finding $x \in \mathbb{R}^{d}$ from $y \in \mathbb{R}^{k}$ given by

$$
y=F(x)+\eta
$$

with noise $\eta \sim \nu$ and prior $x \sim \pi$ such that $\eta \perp x$. The posterior $\pi^{y}$ on $x \mid y$ is given by Bayes' theorem

$$
\pi^{y}(x)=\frac{1}{Z} \nu(y-F(x)) \pi(x)
$$

We have the negative log-likelihood:

$$
\mathrm{L}(x)=-\log \nu(y-F(x))
$$

and a regularizer

$$
\mathrm{R}(x)=-\log \pi(x)
$$

When added together these two functions of $x$ comprise an objective function of the form

$$
\mathrm{J}(x)=\mathrm{L}(x)+\mathrm{R}(x)
$$

Furthermore

$$
\pi^{y}(x)=\frac{1}{Z} \nu(y-F(x)) \pi(x) \propto e^{-J(x)}
$$

We see that minimizing the objective function J is equivalent to maximizing the posterior $\pi^{y}$. Therefore, the MAP estimator can be rewritten in terms of J as follows:

$$
\hat{x}_{\mathrm{MAP}}=\arg \max _{x \in \mathbb{R}^{d}} \pi^{y}(x)=\arg \min _{x \in \mathbb{R}^{d}} J(x)
$$

Let us consider conditions under which the MAP estimator is attained, and characterize the MAP estimator in terms of small ball probabilities - this interpretation generalizes the definition of MAP estimators to measures that do not possess a Lebesgue density.

For any optimization problem for an objective function with a finite infimum, it is of interest to determine whether the infimum is attained.

Theorem (Attainable MAP estimator)
Assume that J is non-negative, continuous and that $\mathrm{J}(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. Then J attains its infimum. Therefore, the MAP estimator of $x$ based on the posterior $\pi^{y}(x) \propto \exp (-J(x))$ is attained.

## Proof.

By the assumed growth and non-negativity of J , there is $R$ such that $\inf _{x \in \mathbb{R}^{d}} \mathrm{~J}(x)=\inf _{x \in \bar{B}(0, R)} \mathrm{J}(x)$ where $\bar{B}(0, R)$ denotes the closed ball of radius $R$ around the origin. Since $J$ is assumed to be continuous, its infimum over $\bar{B}(0, R)$ is attained and the proof is complete.

Remark. The assumption that $\mathrm{J}(x) \rightarrow \infty$ is not restrictive: this condition needs to hold in order to be able to normalize $\pi^{y}(x) \propto \exp (-J(x))$ into a PDF, which is implicitly assumed in the second part of the theorem statement.

## Example. Suppose that

(1) $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ is continuous and $\eta \sim \mathcal{N}(0, \Gamma)$;
(2) the objective function $\mathrm{J}(x)=\mathrm{L}(x)+\mathrm{R}(x)$ has $\Gamma$-weighted $L^{2}$ loss

$$
\mathrm{L}(x)=\frac{1}{2}\|y-F(x)\|_{\Gamma^{-1}}^{2}
$$

and $L^{p}$ regularizer

$$
\mathrm{R}(x)=\frac{\lambda}{p}\|u\|_{p}^{p}, \quad p \in(0, \infty)
$$

Then the assumptions on J in the previous theorem are satisfied, and the infimum of $J$ is attained at the MAP estimator of the corresponding Bayesian problem with posterior PDF proportional to $\exp (-J(u))$.

Intuitively the MAP estimator maximizes posterior probability. We make this precise in the following theorem which links the objective function J to small ball probabilities.

## Theorem (Objective function and posterior probability)

Assume that J is non-negative, continuous and that $\mathrm{J}(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. Let

$$
\alpha(x, \delta):=\int_{B(x, \delta)} \pi^{y}(v) \mathrm{d} v=\mathbb{P}^{\pi^{y}}(B(x, \delta))
$$

be the posterior probability of a ball with radius $\delta$ centered at $x$. Then, for all $x_{1}, x_{2} \in \mathbb{R}^{d}$, we have

$$
\lim _{\delta \rightarrow 0} \frac{\alpha\left(x_{1}, \delta\right)}{\alpha\left(x_{2}, \delta\right)}=e^{\mathrm{J}\left(x_{2}\right)-\mathrm{J}\left(x_{1}\right)}
$$

Remark: For fixed $x_{2}$, the right-hand side is maximized at point $x_{1}$ that minimizes J. Independently of the choice of any fixed $x_{2}$, the above result shows that the probability of a small ball of radius $\delta$ centered at $x_{1}$ is, approximately, maximized by choosing the centre at a minimizer of J. This result essentially characterizes the MAP estimate and, since it makes no reference to Lebesgue density, it can be generalized to infinite dimensions.

Proof. Let $x_{1}, x_{2} \in \mathbb{R}^{d}, \varepsilon>0$. By continuity of J , for all sufficiently small $\delta$ :

$$
x \in \bar{B}\left(x_{j}, \delta\right) \quad \Rightarrow \quad\left|\mathrm{J}(x)-\mathrm{J}\left(x_{j}\right)\right| \leq \varepsilon, \quad j \in\{1,2\}
$$

and therefore

$$
\begin{array}{ll}
e^{-J\left(x_{1}\right)-\varepsilon} \leq e^{-J(v)} \leq e^{-J\left(x_{1}\right)+\varepsilon} & \text { for all } v \in B\left(x_{1}, \delta\right), \\
e^{-J\left(x_{2}\right)-\varepsilon} \leq e^{-J(v)} \leq e^{-J\left(x_{2}\right)+\varepsilon} & \text { for all } v \in B\left(x_{2}, \delta\right) .
\end{array}
$$

It follows, for all $\delta$ sufficiently small, that

$$
\begin{aligned}
& B_{\delta} e^{-J\left(x_{1}\right)-\varepsilon} \leq \int_{B\left(x_{1}, \delta\right)} e^{-J(v)} \mathrm{d} v \leq B_{\delta} e^{-J\left(x_{1}\right)+\varepsilon} \\
& B_{\delta} e^{-J\left(x_{2}\right)-\varepsilon} \leq \int_{B\left(x_{2}, \delta\right)} e^{-J(v)} \mathrm{d} v \leq B_{\delta} e^{-J\left(x_{2}\right)+\varepsilon}
\end{aligned}
$$

where $B_{\delta}$ is the Lebesgue measure of a ball with radius $\delta$. Taking the ratio of $\alpha$ 's and using the above bounds we obtain that, for all $\delta$ sufficiently small,

$$
e^{J\left(x_{2}\right)-J\left(x_{1}\right)-2 \varepsilon} \leq \frac{\alpha\left(x_{1}, \delta\right)}{\alpha\left(x_{2}, \delta\right)} \leq e^{J\left(x_{2}\right)-J\left(x_{1}\right)+2 \varepsilon} .
$$

Since $\varepsilon$ was arbitrary, the desired result follows.

## Unimodal distributions



Figure: If the posterior is single-peaked, the MAP estimator reasonably summarizes the most likely value of the unknown parameter.

## Problems with uneven distributions




Figure: If the posterior is unevenly distributed, then it is less clear that the MAP or CM estimators usefully summarize the posterior.

## Problems with rough distributions



Figure: If the objective function $J(x)$ is very rough (here it is a quadratic function contaminated with white noise), then the resulting posterior density is very rough.

The objective function has small-scale roughness, but it has a larger pattern. The MAP estimator cannot capture this larger pattern as it is found by minimizing the objective function. Arguably, $x=0$ might be a better point estimate.

## Problems with high dimension

Gaussian Annulus Theorem: Nearly all the probability of a d-dimensional spherical Gaussian distribution with unit variance is concentrated in a thin annulus of width $\mathcal{O}(1)$ at radius $\sqrt{d}$.

For example, if $x \sim \mathcal{N}\left(0, I_{d}\right)$, then

| $d$ | $\mathbb{P}(\\|x\\|<5)$ |
| :--- | :--- |
| 10 | 0.99465 |
| 50 | 0.00119 |
| 100 | $1.135 \mathrm{e}-15$ |

A point estimator may not capture enough information about the density.
Empirical distributions of $\|x\|_{2}, x \sim N\left(0, I_{d}\right)$


## Gaussian approximation

We explored the idea of obtaining a point estimator using an optimization perspective arising from maximizing the posterior PDF. This idea reduces the complexity of Bayesian inference from determination of an entire distribution to determination of a single point, however, the approach has some limitations, in particular for noisy, multi-peaked or high-dimensional posterior distributions.

Instead of seeking a point estimator, we can try seeking a Gaussian distribution $p=\mathcal{N}(\mu, \Sigma)$ that minimizes the Kullback-Leibler divergence from the posterior $\pi^{y}(x)$. Since the Kullback-Leibler divergence is not symmetric this leads to two distinct problems, which we will consider separately.

## The Kullback-Leibler divergence

## Definition

Let $\pi, \pi^{\prime}>0$ be two probability distributions on $\mathbb{R}^{d}$. The Kullback-Leibler (KL) divergence, or relative entropy, of $\pi$ with respect to $\pi^{\prime}$ is defined by

$$
\begin{aligned}
d_{\mathrm{KL}}\left(\pi \| \pi^{\prime}\right) & :=\int_{\mathbb{R}^{d}} \log \left(\frac{\pi(x)}{\pi^{\prime}(x)}\right) \pi(x) \mathrm{d} x \\
& =\mathbb{E}^{\pi}\left[\log \left(\frac{\pi}{\pi^{\prime}}\right)\right] \\
& =\mathbb{E}^{\pi^{\prime}}\left[\log \left(\frac{\pi}{\pi^{\prime}}\right) \frac{\pi}{\pi^{\prime}}\right]
\end{aligned}
$$

Kullback-Leibler is a divergence in that $d_{\mathrm{KL}}\left(\pi \| \pi^{\prime}\right) \geq 0$, with equality if and only if $\pi=\pi^{\prime}$ a.e. However, unlike Hellinger and total variation, it is not a distance. In particular, the KL divergence is not symmetric: in general

$$
d_{\mathrm{KL}}\left(\pi \| \pi^{\prime}\right) \neq d_{\mathrm{KL}}\left(\pi^{\prime} \| \pi\right)
$$

The KL divergence is useful for at least the following reasons:

- it provides an upper bound for many distances;
- its logarithmic structure allows explicit computations that are difficult using actual distances;
- it satisfies many convenient analytical properties such as being convex in both arguments and lower-semicontinuous in the topology of weak convergence;
- it has an information-theoretic and physical interpretation.


## Lemma

The KL divergence provides the following upper bounds for Hellinger and total variation distance:

$$
d_{\mathrm{H}}\left(\pi, \pi^{\prime}\right)^{2} \leq \frac{1}{2} d_{\mathrm{KL}}\left(\pi \| \pi^{\prime}\right), \quad d_{\mathrm{TV}}\left(\pi, \pi^{\prime}\right)^{2} \leq d_{\mathrm{KL}}\left(\pi \| \pi^{\prime}\right)
$$

Proof. Recall from Week 6 that $\frac{1}{\sqrt{2}} d_{\mathrm{TV}}\left(\pi, \pi^{\prime}\right) \leq d_{\mathrm{H}}\left(\pi, \pi^{\prime}\right)$ $\Leftrightarrow d_{\mathrm{TV}}\left(\pi, \pi^{\prime}\right)^{2} \leq 2 d_{\mathrm{H}}\left(\pi, \pi^{\prime}\right)^{2}$. Thus the second inequality follows from the first one. We prove only the first inequality.

Consider the function $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ defined by

$$
\phi(x)=x-1-\log x
$$

Note that

$$
\begin{aligned}
\phi^{\prime}(x) & =1-\frac{1}{x} \\
\phi^{\prime \prime}(x) & =\frac{1}{x^{2}} \\
\lim _{x \rightarrow+\infty} \phi(x) & =\phi(0)=\infty
\end{aligned}
$$

Thus the function is convex on its domain. As the minimum of $\phi$ is attained at $x=1$, and as $\phi(1)=0$, we deduce that $\phi(x) \geq 0$ for all $x \in(0, \infty)$. Hence,

$$
\begin{aligned}
& x-1 \geq \log x \quad \text { for all } x>0, \\
& \sqrt{x}-1 \geq \frac{1}{2} \log x \quad \text { for all } x>0 \text {. }
\end{aligned}
$$

We can use this last inequality to bound the Hellinger distance:

$$
\begin{aligned}
d_{\mathrm{H}}\left(\pi, \pi^{\prime}\right)^{2} & =\frac{1}{2} \int_{\mathbb{R}^{d}}\left(1-\sqrt{\frac{\pi^{\prime}}{\pi}}\right)^{2} \pi \mathrm{~d} x \\
& =\frac{1}{2} \int_{\mathbb{R}^{d}}\left(1+\frac{\pi^{\prime}}{\pi}-2 \sqrt{\frac{\pi^{\prime}}{\pi}}\right) \pi \mathrm{d} x \\
& =1-\int_{\mathbb{R}^{d}} \sqrt{\frac{\pi^{\prime}}{\pi}} \pi \mathrm{d} x \\
& =\int_{\mathbb{R}^{d}}\left(1-\sqrt{\frac{\pi^{\prime}}{\pi}}\right) \pi \mathrm{d} x \\
& \leq-\frac{1}{2} \int_{\mathbb{R}^{d}} \log \left(\frac{\pi^{\prime}}{\pi}\right) \pi \mathrm{d} x=\frac{1}{2} \int_{\mathbb{R}^{d}} \log \left(\frac{\pi}{\pi^{\prime}}\right) \pi \mathrm{d} x=\frac{1}{2} d_{\mathrm{KL}}\left(\pi \| \pi^{\prime}\right)
\end{aligned}
$$

## Best Gaussian approximation

Let $\pi$ be the target distribution, e.g., the posterior. We consider two different minimization problems, both leading to a "best Gaussian":

$$
\inf _{p \in \mathcal{A}} d_{\mathrm{KL}}(p \| \pi) \quad \text { ("Mode-seeking Gaussian approximation") }
$$

and

$$
\inf _{p \in \mathcal{A}} d_{\mathrm{KL}}(\pi \| p)
$$

("Mean-seeking Gaussian approximation")
where the minimization is performed over the set of Gaussian distributions on $\mathbb{R}^{d}$ with positive definite covariance, i.e.,

$$
\mathcal{A}:=\left\{\mathcal{N}(\mu, \Sigma) \mid \mu \in \mathbb{R}^{d}, \Sigma \in \mathbb{R}^{d \times d} \text { positive definite }\right\}
$$


(a) Minimizing $d_{\mathrm{KL}}(p \| \pi)$

(b) Minimizing $d_{\text {KL }}(\pi \| p)$

- Fig. (a): Minimizing $d_{\mathrm{KL}}(p \| \pi)$ may miss out components of $\pi$ - we want $\log \frac{p}{\pi}$ to be small, which can happen when $p \approx \pi$ or $p \ll \pi$. Minimizing $d_{\mathrm{KL}}(p \| \pi)$ over Gaussians $p$ can only give a single mode approximation which is achieved by matching one of the modes; we may think of this as "mode-seeking".
- Fig. (b): Minimizing $d_{\mathrm{KL}}(\pi \| p)$ over Gaussians $p$ we want $\log \frac{\pi}{p}$ to be small where $p$ appears as the denominator. Wherever $\pi$ has some mass we must let $p$ also have some mass there in order to keep $\frac{\pi}{p}$ as close as possible to one. The mass of $p$ is allocated in a way such that on average the divergence between $p$ and $\pi$ attains its minimum; hence, it can be thought of as "mean-seeking".
Different applications will favor different choices between the mean and mode seeking approaches to Gaussian approximation.


## Best Gaussian fit by minimizing $d_{\mathrm{KL}}(p \| \pi)$ ("mode-seeking")

## Theorem (Best Gaussian approximation / "mode-seeking" )

Suppose that the loss function $\mathrm{L}(x):=-\log \nu(y-F(x))$ is non-negative and bounded above and that the prior $\pi \sim \mathcal{N}\left(0, \lambda^{-1} l\right)$. Then there exists at least one probability distribution $p \in \mathcal{A}$ at which the infimum

$$
\inf _{p \in \mathcal{A}} d_{\mathrm{KL}}\left(p \| \pi^{y}\right)
$$

is attained.
Proof. Let $p(x)=\frac{1}{(2 \pi)^{d / 2}(\operatorname{det} \Sigma)^{1 / 2}} \mathrm{e}^{-\frac{1}{2}|x-\mu|_{\Sigma-1}^{2}}, \pi^{y}(x)=\frac{1}{Z} \mathrm{e}^{-\mathrm{L}(x)-\frac{\lambda}{2}|x|^{2}}$.
Then
$d_{\mathrm{KL}}\left(p \| \pi^{y}\right)=\mathbb{E}^{p}\left[\log \left(\frac{1}{(2 \pi)^{d / 2}(\operatorname{det} \Sigma)^{1 / 2}} \mathrm{e}^{-\frac{1}{2}|x-\mu|_{\Sigma-1}^{2}}\right)-\log \left(\frac{1}{Z} \mathrm{e}^{-\mathrm{L}(x)-\frac{\lambda}{2}|x|^{2}}\right)\right]$
$=-\frac{d}{2} \log (2 \pi)-\frac{1}{2} \log \operatorname{det} \Sigma+\log Z+\mathbb{E}^{p}\left[-\frac{1}{2}|x-\mu|_{\Sigma^{-1}}^{2}+\mathrm{L}(x)+\frac{\lambda}{2}|x|^{2}\right]$.

$$
d_{\mathrm{KL}}\left(p \| \pi^{y}\right)=-\frac{d}{2} \log (2 \pi)-\frac{1}{2} \log \operatorname{det} \Sigma+\log Z+\mathbb{E}^{p}\left[-\frac{1}{2}|x-\mu|_{\Sigma-1}^{2}+\mathrm{L}(x)+\frac{\lambda}{2}|x|^{2}\right] .
$$

Note that $Z$ is the normalization constant for $\pi$ and is independent of $p$ and hence of $\mu$ and $\Sigma$. We can represent a given random variable $x \sim p$ by writing $x=\mu+\Sigma^{1 / 2} \xi$, where $\xi \sim \mathcal{N}(0, I)$, and hence

$$
|x-\mu|_{\Sigma-1}^{2}=\left|\Sigma^{1 / 2} \xi\right|_{\Sigma-1}^{2}=|\xi|^{2} \quad \Rightarrow \quad \mathbb{E}^{p}\left[-\frac{1}{2}|x-\mu|_{\Sigma-1}^{2}\right]=-\frac{d}{2} .
$$

Moreover,

$$
\begin{aligned}
\mathbb{E}^{p}\left[|x|^{2}\right] & =\int_{\mathbb{R}^{d}}|x-\mu+\mu|^{2} p(x) \mathrm{d} x \\
& =\int_{\mathbb{R}^{d}}|x-\mu|^{2} p(x) \mathrm{d} x+2\left\langle\mu, \int_{\mathbb{R}^{d}} x p(x) \mathrm{d} x\right\rangle-2\left\langle\mu, \int_{\mathbb{R}^{d}} \mu p(x) \mathrm{d} x\right\rangle+\int_{\mathbb{R}^{d}}|\mu|^{2} p(x) \mathrm{d} x \\
& =\operatorname{tr}(\Sigma)+2\langle\mu, \mu\rangle-2\langle\mu, \mu\rangle+|\mu|^{2}=\operatorname{tr}(\Sigma)+|\mu|^{2} .
\end{aligned}
$$

We obtain

$$
d_{\mathrm{KL}}\left(p \| \pi^{y}\right)=-\frac{d}{2}-\frac{d}{2} \log (2 \pi)-\frac{1}{2} \log \operatorname{det} \Sigma+\mathbb{E}^{p} \mathrm{~L}(x)+\frac{\lambda}{2}|\mu|^{2}+\frac{\lambda}{2} \operatorname{tr}(\Sigma)+\log Z .
$$

Define $\mathcal{I}(\mu, \Sigma)=\mathbb{E}^{p} \mathrm{~L}(x)+\frac{\lambda}{2}|\mu|^{2}+\frac{\lambda}{2} \operatorname{tr}(\Sigma)-\frac{1}{2} \log \operatorname{det} \Sigma$. Note that there is a correspondence between minimizing $d_{\mathrm{KL}}\left(p \| \pi^{y}\right)$ over $p \in \mathcal{A}$ and minimizing $\mathcal{I}(\mu, \Sigma)$ over $\mu \in \mathbb{R}^{d}$ and positive definite $\Sigma$. Moreover:

- $\mathcal{I}(0, I)<\infty$.
- For any $\Sigma, \mathcal{I}(\mu, \Sigma) \rightarrow \infty$ as $|\mu| \rightarrow \infty$.
- For any $\mu, \mathcal{I}(\mu, \Sigma) \rightarrow \infty$ as $\operatorname{tr}(\Sigma) \rightarrow 0$ or $\operatorname{tr}(\Sigma) \rightarrow \infty$.

Therefore, there are $M, r, R>0$ such that the infimum of $\mathcal{I}(\mu, \Sigma)$ over $\mu \in \mathbb{R}^{d}$ and positive definite $\Sigma$ is equal to the infimum of $\mathcal{I}(\mu, \Sigma)$ over $\tilde{\mathcal{A}}:=\left\{(\mu, \Sigma): \mu \in \mathbb{R}^{d}, \Sigma \in \mathbb{R}^{d \times d}\right.$ positive-definite symmetric, $\left.|\mu| \leq M, r \leq \operatorname{tr}(\Sigma) \leq R\right\}$.

Since $\mathcal{I}$ is continuous in $\tilde{\mathcal{A}}$ it achieves its infimum and the proof is complete.

We remark that the theorem establishes the existence of a best Gaussian approximation. However, minimizers need not be unique.

## Best Gaussian fit by minimizing $d_{\mathrm{KL}}(\pi \| p)$ ("mean-seeking")

The best Gaussian approximation in Kullback-Leibler with respect to its second argument is unique and given by moment matching.

Theorem (Best Gaussian by moment matching / "mean-seeking")
Assume that $\bar{\mu}:=\mathbb{E}^{\pi}[x]$ is finite and that $\bar{\Sigma}:=\mathbb{E}^{\pi}\left[(x-\bar{\mu})(x-\bar{\mu})^{\mathrm{T}}\right]$ is positive definite. (Here, $\pi$ denotes the target distribution, e.g., the posterior.) Then the infimum

$$
\inf _{p \in \mathcal{A}} d_{\mathrm{KL}}(\pi \| p)
$$

is attained by $p=\mathcal{N}(\bar{\mu}, \bar{\Sigma})$.

## independent of $p$

Proof. Note that $d_{\mathrm{KL}}(\pi \| p)=-\mathbb{E}^{\pi}[\log p]+\overbrace{\mathbb{E}^{\pi}[\log \pi]}$. Since we want a Gaussian minimizer, write $p(x)=\left((2 \pi)^{d}|\operatorname{det} \Sigma|\right)^{-1 / 2} \exp \left(-\frac{1}{2}|x-\mu|_{\Sigma^{-1}}^{2}\right)$

$$
\begin{aligned}
\Rightarrow-\mathbb{E}^{\pi}[\log p] & =-\mathbb{E}^{\pi}\left[\operatorname { l o g } \left((2 \pi)^{-d / 2}(\operatorname{det} \Sigma)^{-1 / 2} \mathrm{e}^{\left.\left.-\frac{1}{2}|x-\mu|_{\Sigma-1}^{2}\right)\right]}\right.\right. \\
& =\frac{1}{2} \mathbb{E}^{\pi}\left[|x-\mu|_{\Sigma^{-1}}^{2}\right]+\frac{1}{2} \log \operatorname{det} \Sigma+\frac{d}{2} \log (2 \pi)
\end{aligned}
$$

Note that the final term is irrelevant for the optimation problem.

Let $\Lambda:=\Sigma^{-1}$. Our task is equivalent to finding the minimizer of

$$
I(\mu, \Lambda):=\frac{1}{2} \mathbb{E}^{\pi}\left[(x-\mu) \Lambda(x-\mu)^{\mathrm{T}}\right]-\frac{1}{2} \log \operatorname{det} \Lambda .
$$

Let $\Lambda=\left(\Lambda_{i j}\right)_{i, j=1}^{d}$. We can view the above functional as the $d+d^{2}$ variate function $I\left(\mu_{1}, \ldots, \mu_{d}, \Lambda_{11}, \Lambda_{12}, \ldots, \Lambda_{d d}\right)$. Thus, we only need to show that

$$
\nabla I\left(\bar{\mu}, \bar{\Sigma}^{-1}\right)=0 \quad \text { and } \quad \nabla^{2} I\left(\mu, \Sigma^{-1}\right)>0 \quad \text { for all } \mu, \Sigma .
$$

( $\left(\bar{\mu}, \Sigma^{-1}\right)$ is the critical point and the objective function is convex.)
By defining the notations $\partial_{\mu} f:=\left(\frac{\partial f}{\partial \mu_{i}}\right)_{i=1}^{d}$ (gradient w.r.t. vector $\mu$ ) and $\partial_{\Lambda} f:=\left(\frac{\partial f}{\partial \Lambda_{j i}}\right)_{i, j=1}^{d}$ (gradient w.r.t. vector $\left(\Lambda_{11}, \Lambda_{12}, \ldots, \Lambda_{d d}\right)$, reshaped into a $d \times d$ matrix), we easily see that $\nabla I=0$ can be expressed as the pair

$$
\left\{\begin{aligned}
0=\partial_{\mu} I & =-\mathbb{E}^{\pi}[\Lambda(x-\mu)]=0 \\
0=\partial_{\Lambda} I & =\frac{1}{2} \partial_{\Lambda}\left(\mathbb{E}^{\pi}\left[(x-\mu) \Lambda(x-\mu)^{\mathrm{T}}\right]\right)-\frac{1}{2 \operatorname{det} \Lambda} \partial_{\Lambda} \operatorname{det} \Lambda \\
& =\frac{1}{2} \mathbb{E}^{\pi}\left[(x-\mu)(x-\mu)^{\mathrm{T}}\right]-\frac{1}{2} \Lambda^{-1},
\end{aligned}\right.
$$

where we used a special case of Jacobi's formula $\partial_{\Lambda} \operatorname{det} \Lambda=\operatorname{det} \Lambda \cdot \Lambda^{-1}$. Clearly, $(x, \Lambda)=\left(\bar{\mu}, \bar{\Sigma}^{-1}\right)$ is the critical point satisfying the above condition.

Finally, we need to show that $\nabla^{2} I\left(\mu, \Sigma^{-1}\right)$ is positive definite. To this end, we note that

$$
\begin{aligned}
p(x) & =\sqrt{\frac{\operatorname{det} \Lambda}{(2 \pi)^{d}}} \mathrm{e}^{-\frac{1}{2}(x-\mu)^{\mathrm{T}} \Lambda(x-\mu)}=\sqrt{\frac{\operatorname{det} \Lambda}{(2 \pi)^{d}}} \mathrm{e}^{-\frac{1}{2} x^{\mathrm{T}} \Lambda x+\mu^{\mathrm{T}} \Lambda x-\frac{1}{2} \mu^{\mathrm{T}} \Lambda \mu} \\
& =\sqrt{\frac{\operatorname{det} \Lambda}{(2 \pi)^{d}}} \mathrm{e}^{-\frac{1}{2} \mu^{\mathrm{T}} \Lambda \mu} \mathrm{e}^{-\frac{1}{2} x^{\mathrm{T}} \Lambda x+\mu^{\mathrm{T}} \Lambda x}=\frac{\mathrm{e}^{-\frac{1}{2} x^{\mathrm{T}} \Lambda x+\mu^{\mathrm{T}} \Lambda x}}{\int_{\mathbb{R}^{d}} \mathrm{e}^{-\frac{1}{2} x^{\mathrm{T}} \Lambda x+\mu^{\mathrm{T}} \Lambda x} \mathrm{~d} x} .
\end{aligned}
$$

Noting that $x^{\mathrm{T}} \Lambda x=\sum_{i, j=1}^{d} \Lambda_{i j} x_{i} x_{j}=\sum_{i, j=1}^{d} \Lambda_{i j}\left(x x^{\mathrm{T}}\right)_{i j}$, we can write $x^{\mathrm{T}} \Lambda x=\operatorname{vec}(\Lambda) \cdot \operatorname{vec}\left(x x^{\mathrm{T}}\right)$, where we define

$$
\operatorname{vec}(M):=\left(M_{11}, M_{12}, \ldots, M_{d d}\right)^{\mathrm{T}} \quad \text { for } M \in \mathbb{R}^{d \times d}
$$

In particular,

$$
-\frac{1}{2} x^{\mathrm{T}} \Lambda x+\mu^{\mathrm{T}} \Lambda x=\underbrace{\left[\begin{array}{c}
\Lambda \mu \\
-\frac{1}{2} \operatorname{vec}(\Lambda)
\end{array}\right]^{\mathrm{T}}}_{=: \theta} \underbrace{\left[\begin{array}{c}
x \\
\operatorname{vec}\left(x x^{\mathrm{T}}\right)
\end{array}\right]}_{=: T(x)}
$$

and we can write $p_{\theta}(x):=p(x)=\frac{1}{Z(\theta)} \mathrm{e}^{\theta^{\mathrm{T}} T(x)}, Z(\theta):=\int_{\mathbb{R}^{d}} \mathrm{e}^{\theta^{\mathrm{T}} T(x)} \mathrm{d} x$.

The importance of the characterization

$$
p_{\theta}(x)=\frac{1}{Z(\theta)} \mathrm{e}^{\theta^{\mathrm{T}} T(x)}, \quad Z(\theta):=\int_{\mathbb{R}^{d}} \mathrm{e}^{\theta^{\mathrm{T}} T(x)} \mathrm{d} x,
$$

lies in the fact that every possible Gaussian PDF can be parameterized by the vector $\theta=\left(\theta_{1}, \ldots, \theta_{d+d^{2}}\right)^{\mathrm{T}}$. Thus, the KL divergence $d_{\mathrm{KL}}\left(\pi \| p_{\theta}\right)$ that we are interested in can be recast as

$$
\begin{aligned}
H(\theta) & :=d_{\mathrm{KL}}\left(\pi \| p_{\theta}\right)=-\mathbb{E}^{\pi}\left[\log p_{\theta}\right]+\mathbb{E}^{\pi}[\log \pi] \\
& =-\theta^{\mathrm{T}} \mathbb{E}^{\pi}[T(x)]+\log Z(\theta)+\mathbb{E}^{\pi}[\log \pi] .
\end{aligned}
$$

Noting that $\nabla_{\theta}^{2}\left(\theta^{\mathrm{T}} \mathbb{E}^{\pi}[T(x)]\right)=0$ and $\frac{\partial \log Z(\theta)}{\partial \theta_{i}}=\frac{1}{Z(\theta)} \int_{\mathbb{R}^{d}} \frac{\partial}{\partial \theta_{i}} \mathrm{e}^{\theta^{\mathrm{T}} T(x)} \mathrm{d} x$ $=\frac{1}{Z(\theta)} \int_{\mathbb{R}^{d}} T_{i}(x) \mathrm{e}^{\theta^{\mathrm{T}} T(x)} \mathrm{d} x$, we compute

$$
\left[\nabla_{\theta}^{2} H(\theta)\right]_{i j}=\frac{\partial^{2} \log Z(\theta)}{\partial \theta_{i} \partial \theta_{j}}=\frac{\partial}{\partial \theta_{j}}\left(\frac{1}{Z(\theta)} \int_{\mathbb{R}^{d}} T_{i}(x) \mathrm{e}^{\theta^{\mathrm{T}} T(x)} \mathrm{d} x\right)
$$

$$
=-\frac{1}{Z(\theta)^{2}}\left(\int_{\mathbb{R}^{d}} T_{i}(x) e^{\theta^{\mathrm{T}} T(x)} \mathrm{d} x\right)\left(\int_{\mathbb{R}^{d}} T_{j}(x) e^{\theta^{\mathrm{T}} T(x)} \mathrm{d} x\right)+\frac{1}{Z(\theta)} \int_{\mathbb{R}^{d}} T_{i}(x) T_{j}(x) \mathrm{e}^{\theta^{\mathrm{T}} T(x)} \mathrm{d} x
$$

$$
=\mathbb{E}^{p_{\theta}}\left[T_{i} T_{j}\right]-\mathbb{E}^{p_{\theta}}\left[T_{i}\right] \mathbb{E}^{p_{\theta}}\left[T_{j}\right]=\left[\operatorname{Cov}^{p_{\theta}}(T)\right]_{i j},
$$

which is positive definite.

Remark. Notice that the preceding proof of convexity holds for any distribution $p$ that can be parameterized by the following more general expression:

$$
\begin{align*}
p_{\theta}(x) & =h(x) \exp \left(\theta^{T} T(x)-A(\theta)\right)  \tag{1}\\
\text { with } \quad A(\theta) & =\log \left[\int_{\mathbb{R}^{d}} h(x) \exp \left(\theta^{T} T(x)\right) d x\right] .
\end{align*}
$$

Since $h(x)$ is independent of $\theta$, the conclusion of the previous theorem carries over to distributions with the form of (1). Such distributions belong to the exponential family in the statistics literature. Here, $\theta$ is called the natural parameter, $T(x)$ the sufficient statistic, $h(x)$ the base measure, and $A(\theta)$ the log-partition.

The Gaussian distribution is a special case in which $h(x)$ is constant with respect to $x$.

## Variational formulation of Bayes' theorem

We have been concerned with finding the best Gaussian approximations to a measure with respect to KL divergences. Bayes' theorem itself can be formulated through a closely related minimization principle. Consider a posterior $\pi^{y}(x)$ in the following form:

$$
\pi^{y}(x)=\frac{1}{Z} \exp (-\mathrm{L}(x)) \pi(x)
$$

where $\pi(x)$ is the prior, $\mathrm{L}(x)$ is the negative log-likelihood, and $Z$ the normalization constant. We assume here for exposition that all densities are positive. Let $p$ be an arbitrary PDF. Then we can express $d_{\mathrm{KL}}\left(p \| \pi^{y}\right)$ as

$$
\begin{aligned}
d_{\mathrm{KL}}\left(p \| \pi^{y}\right) & =\int_{\mathbb{R}^{d}} \log \left(\frac{p}{\pi^{y}}\right) p \mathrm{~d} x=\int_{\mathbb{R}^{d}} \log \left(\frac{p}{\pi} \frac{\pi}{\pi^{y}}\right) p \mathrm{~d} x \\
& =\int_{\mathbb{R}^{d}} \log \left(\frac{p}{\pi} \exp (\mathrm{~L}(x)) Z\right) p \mathrm{~d} x \\
& =d_{\mathrm{KL}}(p \| \pi)+\mathbb{E}^{p}[\mathrm{~L}(x)]+\log Z .
\end{aligned}
$$

If we define

$$
\mathcal{J}(p)=d_{\mathrm{KL}}(p \| \pi)+\mathbb{E}^{p}[\mathrm{~L}(x)]
$$

then we have the following:
Theorem (Bayes' theorem as an optimization principle)
The posterior distribution $\pi^{y}$ is given by the following minimization principle:

$$
\pi^{y}=\arg \min _{p \in \mathscr{P}} \mathcal{J}(p)
$$

where $\mathscr{P}$ contains all probability densities on $\mathbb{R}^{d}$.
Proof.
Since $Z$ is the normalization constant for $\pi^{y}$ and is independent of $p$, the minimizer of $d_{\mathrm{KL}}\left(p \| \pi^{y}\right)$ will also be the minimizer of $\mathcal{J}(p)$. Since the global minimizer of $d_{\mathrm{KL}}\left(p \| \pi^{y}\right)$ is attained at $p=\pi^{y}$ the result follows.

Why is it useful to view the posterior as the minimizer of an energy?

- The variational formulation provides a natural way to approximate the posterior by restricting the minimization problem to distributions satisfying some computationally desirable property.
- For instance, variational Bayes methods often restrict the minimization to densities with product structure and in this chapter we have studied restriction to the class of Gaussian distributions.
- Variational formulations allow to show convergence of posterior distributions indexed by some parameter of interest by studying the $\Gamma$-convergence of the associated objective functionals.
- Variational formulations provide natural paths, defined by a gradient flow, towards the posterior. Understanding these flows and their rates of convergence is helpful in the choice of sampling algorithms.

