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Oral exam practical matters

The oral exam will be held on Monday, August 1. Please contact
vesa.kaarnioja@fu-berlin.de in advance to organize a personal
exam appointment time!

The oral exam will take 30 minutes.

The date of the make-up oral exam will be announced at a later time.
The make-up oral exam will take place in early October. Please see
the course page http://numerik.mi.fu-berlin.de/wiki/SS_

2022/InverseProblems.php for updates.

http://numerik.mi.fu-berlin.de/wiki/SS_2022/InverseProblems.php
http://numerik.mi.fu-berlin.de/wiki/SS_2022/InverseProblems.php


Other practical matters

The 11th exercise sheet is the final one. There will be a “bonus”
exercise sheet next week, but this will not be graded. I will be happy
to give feedback on your solutions, however!

The final lecture will be uploaded as a recording on the course
webpage on Monday 18 July. There will be no in-person lecture
or exercise session on Monday 18 July.

If you wish to discuss the solutions to next week’s exercises, please
contact vesa.kaarnioja@fu-berlin.de via email and/or organize an
appointment after returning your solutions.



So far we have discussed inverse problems with a static target:

y = F (x) + η, η ∼ N (0, γ2I ).

Consider the setting where we have repeated independent observations:
measure y N times, assuming that the target remains the same during the
process. Let

D = {y1, . . . , yN} (data),

yj = F (x) + ηj .

Likelihood:

P(y1, . . . , yN |x) ∝
N∏
j=1

P(yj |x) ∝ exp

(
− 1

2γ2

N∑
j=1

‖yj − F (x)‖2

)
,

since we assumed additive Gaussian noise.



Note that

N∑
j=1

‖yj − F (x)‖2

=
N∑
j=1

yTj yj − 2F (x)T
N∑
j=1

yj︸ ︷︷ ︸
=Ny

+ N‖F (x)‖2

= N(‖F (x)‖2 − F (x)Ty + yTy) + N

(
1

N

N∑
j=1

yTj yj − yTy

)
︸ ︷︷ ︸

=:C

= N‖F (x)− y‖2 + NC︸︷︷︸
=constant

.



Therefore

P(y1, . . . , yN |x) ∝ exp

(
− 1

2γ2

N∑
j=1

‖yj − F (x)‖2

)

∝ exp

(
− 1

2(γ2/N)
‖y − F (x)‖2

)
.

Hence, repeating the measurement independently N times is equivalent to
replacing the model with

y = F (x) + η, η ∼ N
(

0,
γ2

N

)
.

Variance reduction of the noise.



It is essential that the target does not change during the measurement
process.

Examples where the condition may not be valid:

EEG

Target tracking

Weather forecasting



Dynamic inverse problems

More general observation model:

yj = F (xj) + ηj , j = 1, 2, . . . , J.

The observations cannot be integrated unless we have a dynamic prior
model.

One of the simplest dynamic prior models is a 1-Markov evolution model

xj+1 = G (xj) + ξj+1, j = 0, 1, . . . , J − 1,

where G : Rd → Rd is presumably known and ξj+1 is an innovation
process.



Examples

Static measurement: G (x) = x , ξj+1 = 0.
Random walk model (often used in lack of anything more
sophisticated):

xj+1 = xj + ξj+1, ξj+1 ∼ N (0, σ2I ).

First order differential equation: assume that the unknown is a
time-dependent vector x(t) ∈ Rd satisfying ideally the differential
equation

x ′(t) = f (x(t), t).

Time discretization: let tj = jh, j = 0, 1, . . ., and write xj = x(tj).
Then we can use finite differences, e.g., forward Euler method

xj+1 = xj + hf (xj , tj) + ξj+1

or backward Euler method

xj+1 = xj + hf (xj+1, tj+1) + ξj+1,

where ξj+1 accounts for discretization errors as well as possible
deviations from the ideal.



Basic form of Bayes filtering

Evolution-observation model:

xj+1 = G (xj) + ξj+1, j = 0, 1, . . . , J − 1,

yj+1 = F (xj+1) + ηj+1, j = 0, 1, . . . , J − 1.

The observations y1, . . . , yJ and the prior probability density of x0 are
given.



Adaptive algorithm

The goal is an algorithm which works as follows:

Given the density of x0, predict the density of x1 using the prior
evolution model.

Using the predicted density of x1 as prior, calculate the posterior
density of x1|y1.

Using the posterior density of x1|y1, predict the density of x2.

Using the predicted density of x2 as prior, calculate the posterior
density of x2|y1, y2.

Continue similarly.



P(x0)
↓

P(x1|x0)→ evolution updating
↓

P(x1)
↓

observation updating ← P(y1|x1)
↓

P(x1|y1)
↓

P(x2|x1)→ evolution updating
↓

P(x2|y1)
↓

observation updating ← P(y2|x2)
↓

P(x2|y1, y2)
↓
...



Prediction step: Given the density of xj , calculate the density of
xj+1 from

xj+1 = G (xj) + ξj+1. (propagation problem)

Correction step: Given the prior density of xj+1, calculate the
posterior density of xj+1|yj+1 using the observational model

yj+1 = F (xj+1) + ηj+1. (inverse problem)



Particular approaches

Linear model, Gaussian innovation and error: classical Kalman
filtering.

Linearization of non-linear evolution (or observation) model: extended
Kalman filtering.

Nonlinear and/or non-Gaussian models: particle filtering.



Kalman filter

Consider the linear (G (·) = M·, F (·) = H·) evolution-observation system

xj+1 = Mxj + ξj+1, ξj+1
i.i.d.∼ N (0,Σ),

yj+1 = Hxj+1 + ηj+1, ηj+1
i.i.d.∼ N (0, Γ).

Prediction: Suppose xj ∼ N (mj ,Cj). Then (cf. exercise from week 5)

xj+1 = Mxj + ξj+1 ∼ N (m̂j+1, Ĉj+1),

where m̂j+1 = Mmj and Ĉj+1 = MCjM
T + Σ.

Correction: Linear Gaussian setting implies xj+1|yj+1 ∼ N (mj+1,Cj+1),
where (cf. exercise from week 7)

mj+1 = m̂j+1 + Ĉj+1H
T(HĈj+1H

T + Γ)−1(yj+1 − Hm̂j+1),

Cj+1 = Ĉj+1 − Ĉj+1H
T(HĈj+1H

T + Γ)−1HĈj+1.

Remark: The expensive step in Kalman filtering is the computation of the
so-called Kalman gain matrix:

Kj+1 = Ĉj+1H
T(HĈj+1H

T + Γ)−1.



Kalman filter algorithm

Given: Initial distribution for x0 ∼ N (m0,C0), where m0 ∈ Rd and
C0 ∈ Rd×d is symmetric and positive definite.

for j = 0, 1, 2, . . . , J − 1, do

Prediction step:

m̂j+1 = Mmj

Ĉj+1 = MCjM
T + Σ

Correction step:

Kj+1 = Ĉj+1H
T(HĈj+1H

T + Γ)−1

mj+1 = m̂j+1 + Kj+1(yj+1 − Hm̂j+1)

Cj+1 = Ĉj+1 − Kj+1HĈj+1

end for

Output: Predicted distributions for xj ∼ N (m̂j+1, Ĉj+1) and filtering
distributions for xj+1|y1, . . . , yj+1 ∼ N (mj+1,Cj+1), j = 0, . . . , J − 1.



Extended Kalman filter (non-linear evolution model)

Consider non-linear G : Rd → Rd and linear F (·) = H· with

xj+1 = G (xj) + ξj+1, ξj+1
i.i.d.∼ N (0,Σ),

yj+1 = Hxj+1 + ηj+1, ηj+1
i.i.d.∼ N (0, Γ),

with x0 ∼ N (m0,C0).

Prediction: Suppose xj ∼ N (mj ,Cj). We can linearize

xj+1 = G (xj) + ξj+1 ≈ G (mj) + DG (mj)(xj −mj) + ξj .

An affine transformation is still Gaussian, so we obtain the approximations

m̂j+1 = G (mj), Ĉj+1 = DG (mj)CjDG (mj)
T + Σ.

Correction: Now that xj+1 ∼ N (m̂j+1, Ĉj+1), we can use the linear
Gaussian setting to obtain xj+1|yj+1 ∼ N (mj+1,Cj+1) with

mj+1 = m̂j+1 + Ĉj+1H
T(HĈj+1H

T + Γ)−1(yj+1 − Bm̂j+1),

Cj+1 = Ĉj+1 − Ĉj+1H
T(HĈj+1H

T + Γ)−1HĈj+1.



Ensemble Kalman filter (non-linear evolution model)

Consider

xj+1 = G (xj) + ξj+1, ξj+1
i.i.d.∼ N (0,Σ),

yj+1 = Hxj+1 + ηj+1, ηj+1
i.i.d.∼ N (0, Γ),

with x0 ∼ N (m0,C0).

The computation of the analytical predictive covariances and (in the
non-linear setting) the Jacobi matrix become computationally inefficient
and expensive for high-dimensional systems. The basic idea of ensemble
Kalman filter is as follows:

1 Draw a sample from the initial distribution of x0 (“initial ensemble”)

2 Replace the predictive mean m̂j+1 and covariance Ĉj+1 as well as the
filtering mean mj+1 and covariance Cj+1 with their corresponding
sample means and covariances by propagating the initial ensemble
through the evolution-observation model.



Ensemble Kalman filter algorithm

Given: Ensemble size N. Initial ensemble {x (i)
0 }

N
i=1 drawn from the initial distribution of

x0 ∼ N (m0,C0), where m0 ∈ Rd and C0 ∈ Rd×d is symmetric and positive definite.
Parameter s ∈ {0, 1}.
for j = 0, 1, 2, . . . , J − 1, do

Prediction step:

draw ξ
(i)
j+1

i.i.d.∼ N (0,Σ), i = 1, . . . ,N,

x̂
(i)
j+1 = G(x

(i)
j ) + ξ

(i)
j+1, i = 1, . . . ,N,

m̂j+1 =
1

N

N∑
i=1

x̂
(i)
j+1 and Ĉj+1 =

1

N

n∑
i=1

(x̂
(i)
j+1 − m̂j+1)(x̂

(i)
j+1 − m̂j+1)T.

Correction step:

draw η
(i)
j+1

i.i.d.∼ N (0, Γ), i = 1, . . . ,N,

y
(i)
j+1 = yj+1 + sη

(i)
j+1, i = 1, . . . ,N,

Kj+1 = Ĉj+1H
T(HĈj+1H

T + Γ)−1,

x
(i)
j+1 = x̂

(i)
j+1 + Kj+1(y

(i)
j+1 − Hx̂

(i)
j+1), i = 1, . . . ,N.

end for

Output: Ensembles {x (i)
j }

N
i=1, j = 0, . . . , J.



Remark:

Setting the parameter s = 1 is suitable at approximating the Kalman

filter in linear Gaussian settings: if each prediction particle x̃
(i)
j+1 is

distributed according to a non-degenerate Gaussian distribution, then

in the linear Gaussian setting the “corrected” particle x
(i)
j+1 will be

Gaussian with mean and covariance that agree with the usual Kalman
filter formulae. See Theorem 10.1 in Sanz-Alonso, Stuart, Taeb 2018.

Setting the parameter s = 0 is natural if viewing the algorithm as a
sequential optimizer in problems where the filtering distributions are
not well approximated by Gaussians. See Section 8.1.2 in
Sanz-Alonso, Stuart, Taeb 2018.



General evolution-observation model and particle filters

Consider the more general model

xj+1 = G (xj , ξj+1), j = 0, 1, . . . , J − 1,

yj+1 = F (xj+1, ηj+1), j = 0, 1, . . . , J − 1.

The functions F and G are assumed to be known. We also assume that
ξj+1 ⊥ xj and ηj+1 ⊥ xj+1.

Observation and evolution models may be cumbersome or impossible to
linearize (e.g., non-differentiable or no closed form). One may try Monte
Carlo methods to simulate the distributions by random samples.

The goal in particle filter methods is to produce sequentially an ensemble

of random samples {x (1)
j , . . . , x

(N)
j } distributed according to the

conditional probability distributions P(xj+1|y1, . . . , yj) (prediction) or

P(xj |y1, . . . , yj) (filtering). The vectors x
(i)
j are called particles of the

sample, hence the name particle filter.

One straightforward particle filter method is known as the sampling
importance resampling filter (also known as SIR or bootstrap filter).



Sampling importance resampling (Bootstrapping)

1 Set j = 0 and generate an initial sample S0 = {x (i)
0 }

N
i=1 by drawing from the

density P(x0). (This may require MCMC if the initial density is complicated, e.g.,
non-Gaussian.)

2 Prediction: Draw ξ
(i)
j+1 from the distribution of ξj+1 and set x̂

(i)
j+1 = G(x

(i)
j , ξ

(i)
j+1) for

1 ≤ i ≤ N. Let Ŝj+1 = {x̂ (i)
j+1}

N
i=1.

3 Correction: Assume that from the observational model yj = F (xj , ηj), we can
calculate the likelihood density CP(yj |xj), j = 1, 2, . . . , J, up to a multiplicative
constant C > 0.† Calculate the importance of each propagated particle

ŵ
(i)
j+1 = CP(yj+1|x̂ (i)

j+1), 1 ≤ i ≤ N,

and compute their relative importance

w
(i)
j+1 =

ŵ
(i)
j+1

W
, W =

N∑
i=1

ŵ
(i)
j+1.

Resampling: draw a new sample Sj+1 = {x (1)
j+1, . . . , x

(N)
j+1} from the sample Ŝj+1,

with the probability of drawing x̂
(i)
j+1 set equal to w

(i)
j+1. Set j ← j + 1 and return to

step 2.
†E.g., if yj = F (xj) + ηj , ηj ∼ N (0, Γ), then P(yj |xj) ∝ exp(− 1

2
‖yj − F (xj)‖2

Γ−1 ).



Numerical example

Let us consider the heat equation with insulating boundary conditions
∂tu(x , t) = ∂2

x (x , t), x ∈ (0, 1), t ∈ (0,T ),

∂xu(0, t) = ∂x(1, t) = 0, t ∈ (0,T ),

u(x , 0) = f (x), x ∈ (0, 1),

where f : [0, 1]→ R is a (poorly known) initial heat distribution.

The temperature is measured at discrete times tj = j∆t at the end points:

yj =

[
u(0, tj)
u(1, tj)

]
+ ηj , j ∈ {1, . . . , J},

where ηj
i.i.d.∼ N (0, γ2I2).

Goal: Track the target heat distribution u(x , t) for t ∈ {t1, . . . , tJ} and
x ∈ (0, 1).



Discretization of the model problem

Divide the spatial interval into equally spaced subintervals with end points
xj = j/n, 0 ≤ j ≤ n. Further, let u(t) := [u(x1, t), . . . , u(xn−1, t)]T. We
have

∂2
xu(xj , t) ≈ n2(u(xj−1, t)− 2u(xj , t) + u(xj+1, t)), 1 ≤ j ≤ n − 1.

The Neumann boundary conditions are approximated by

u(0, t) = u(x1, t) and u(1, t) = u(xn−1, t).

This yields the semidiscretized evolution equation

∂

∂t
u(t) = n2


−1 1
1 −2 1

. . .

−2 1
1 −1


︸ ︷︷ ︸

=:L∈R(n−1)×(n−1)

u(t).



We simulate the measurements yj by solving the PDE for each time point
tj = j∆t, j = 1, . . . , J. To avoid the inverse crime, the forward problem is
solved using a dense computational grid with spatial discretization
computed using n = 150 grid points. The values at the boundary
x ∈ {0, 1} are contaminated with simulated mean-zero Gaussian
measurement noise with standard deviation γ = 0.0001. The actual
inversion takes place on a computational grid with n = J = 100. As the
analytical initial heat distribution, we use f (x) = x2(1− x)2.
For Kalman filtering, we suppose that it is known that the temperature
distribution follows the equation

∂

∂t
u(t) = Lu(t).

We discretize the evolution model using the backward Euler method:

u(tj+1) = (I −∆tL)−1u(tj) + ξj ,

where the innovation term is modeled as ξj
i.i.d.∼ N (0, σ2I ) with σ = 0.01.

Note that, in terms of the notation introduced previously, the evolution

matrix is M = (I −∆tL)−1 and the observation operator is H =

[
eT

1

eT
n−1

]
.



Finally, we assume that the initial heat distribution is poorly known and
modeled using a Gaussian smoothness prior

N (0,C0),

where C0 = 0.1(DTD)−1 with D = n−2L.

We track the temperature distribution using both Kalman filtering and
ensemble Kalman filtering. We display the filtered CM estimates for both
approaches.



Kalman filter
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Kalman filter
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Kalman filter
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Kalman filter
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Kalman filter
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Kalman filter
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Kalman filter
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Kalman filter
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Ensemble Kalman filter (N = 106)
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Ensemble Kalman filter (N = 106)
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Ensemble Kalman filter (N = 106)
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Ensemble Kalman filter (N = 106)
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Ensemble Kalman filter (N = 106)
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Ensemble Kalman filter (N = 106)
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Ensemble Kalman filter (N = 106)
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Ensemble Kalman filter (N = 106)
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Ensemble Kalman filter (N = 106)
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Ensemble Kalman filter (N = 106)
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Remarks:

The Kalman filter is optimal in the sense that it gives the best
estimator of the mean in an online setting. (See Theorem 8.6 in
Sanz-Alonso, Stuart, Taeb 2018).

In the linear case (G (·) = M·), the ensemble Kalman filter converges
to the Kalman filter. When applicable, the ensemble Kalman filter is
much more efficient than particle filters. A primary advantage of
ensemble methods is that they can provide good state estimation
even when the number of particles is not large.


