Inverse Problems

Sommersemester 2022

Vesa Kaarnioja vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik

Eleventh lecture, July 11, 2022

- The oral exam will be held on **Monday**, **August 1**. Please contact vesa.kaarnioja@fu-berlin.de in advance to organize a personal exam appointment time!
- The oral exam will take 30 minutes.
- The date of the make-up oral exam will be announced at a later time. The make-up oral exam will take place in early October. Please see the course page http://numerik.mi.fu-berlin.de/wiki/SS_ 2022/InverseProblems.php for updates.

- The 11th exercise sheet is the final one. There will be a "bonus" exercise sheet next week, but this will not be graded. I will be happy to give feedback on your solutions, however!
- The final lecture will be uploaded as a recording on the course webpage on Monday 18 July. There will be no in-person lecture or exercise session on Monday 18 July.
 - If you wish to discuss the solutions to next week's exercises, please contact vesa.kaarnioja@fu-berlin.de via email and/or organize an appointment after returning your solutions.

So far we have discussed inverse problems with a static target:

$$y = F(x) + \eta, \quad \eta \sim \mathcal{N}(0, \gamma^2 I).$$

Consider the setting where we have repeated independent observations: measure y N times, assuming that the target remains the same during the process. Let

$$\begin{split} D &= \{y_1, \dots, y_N\} \quad \text{(data)}, \\ y_j &= F(x) + \eta_j. \end{split}$$

Likelihood:

$$\mathbb{P}(y_1,\ldots,y_N|x) \propto \prod_{j=1}^N \mathbb{P}(y_j|x) \propto \exp\bigg(-\frac{1}{2\gamma^2}\sum_{j=1}^N \|y_j - F(x)\|^2\bigg),$$

since we assumed additive Gaussian noise.

Note that

$$\sum_{j=1}^{N} ||y_{j} - F(x)||^{2}$$

$$= \sum_{j=1}^{N} y_{j}^{\mathrm{T}} y_{j} - 2F(x)^{\mathrm{T}} \sum_{\substack{j=1 \ =N\overline{y}}}^{N} y_{j} + N ||F(x)||^{2}$$

$$= N(||F(x)||^{2} - F(x)^{\mathrm{T}} \overline{y} + \overline{y}^{\mathrm{T}} \overline{y}) + N\left(\frac{1}{N} \sum_{j=1}^{N} y_{j}^{\mathrm{T}} y_{j} - \overline{y}^{\mathrm{T}} \overline{y}\right)$$

$$= N ||F(x) - \overline{y}||^{2} + NC .$$

= constant

Therefore

$$\mathbb{P}(y_1,\ldots,y_N|x) \propto \exp\left(-\frac{1}{2\gamma^2}\sum_{j=1}^N \|y_j - F(x)\|^2
ight)$$

 $\propto \exp\left(-\frac{1}{2(\gamma^2/N)}\|\overline{y} - F(x)\|^2
ight).$

Hence, repeating the measurement *independently* N times is equivalent to replacing the model with

$$\overline{y} = F(x) + \eta, \quad \eta \sim \mathcal{N}\left(0, \frac{\gamma^2}{N}\right).$$

Variance reduction of the noise.

It is essential that the target does not change during the measurement process.

Examples where the condition may not be valid:

- EEG
- Target tracking
- Weather forecasting

Dynamic inverse problems

More general observation model:

$$y_j = F(x_j) + \eta_j, \quad j = 1, 2, \dots, J.$$

The observations cannot be integrated unless we have a *dynamic prior model*.

One of the simplest dynamic prior models is a 1-Markov evolution model

$$x_{j+1} = G(x_j) + \xi_{j+1}, \quad j = 0, 1, \dots, J-1,$$

where $G : \mathbb{R}^d \to \mathbb{R}^d$ is presumably known and ξ_{j+1} is an *innovation process*.

Examples

- Static measurement: G(x) = x, $\xi_{j+1} = 0$.
- Random walk model (often used in lack of anything more sophisticated):

$$x_{j+1} = x_j + \xi_{j+1}, \quad \xi_{j+1} \sim \mathcal{N}(0, \sigma^2 I).$$

• First order differential equation: assume that the unknown is a time-dependent vector $x(t) \in \mathbb{R}^d$ satisfying *ideally* the differential equation

$$x'(t)=f(x(t),t).$$

Time discretization: let $t_j = jh$, j = 0, 1, ..., and write $x_j = x(t_j)$. Then we can use finite differences, e.g., forward Euler method

$$x_{j+1} = x_j + hf(x_j, t_j) + \xi_{j+1}$$

or backward Euler method

$$x_{j+1} = x_j + hf(x_{j+1}, t_{j+1}) + \xi_{j+1},$$

where ξ_{j+1} accounts for discretization errors as well as possible deviations from the ideal.

Evolution-observation model:

$$\begin{aligned} x_{j+1} &= G(x_j) + \xi_{j+1}, \quad j = 0, 1, \dots, J-1, \\ y_{j+1} &= F(x_{j+1}) + \eta_{j+1}, \quad j = 0, 1, \dots, J-1. \end{aligned}$$

The observations y_1, \ldots, y_J and the prior probability density of x_0 are given.

The goal is an algorithm which works as follows:

- Given the density of x₀, *predict* the density of x₁ using the prior evolution model.
- Using the predicted density of x₁ as *prior*, calculate the posterior density of x₁|y₁.
- Using the posterior density of $x_1|y_1$, predict the density of x_2 .
- Using the predicted density of x₂ as *prior*, calculate the posterior density of x₂|y₁, y₂.
- Continue similarly.

• **Prediction step:** Given the density of x_j , calculate the density of x_{j+1} from

$$x_{j+1} = G(x_j) + \xi_{j+1}.$$
 (propagation problem)

• **Correction step:** Given the prior density of x_{j+1} , calculate the posterior density of $x_{j+1}|y_{j+1}$ using the observational model

 $y_{j+1} = F(x_{j+1}) + \eta_{j+1}.$ (inverse problem)

- Linear model, Gaussian innovation and error: classical Kalman filtering.
- Linearization of non-linear evolution (or observation) model: extended Kalman filtering.
- Nonlinear and/or non-Gaussian models: particle filtering.

Consider the linear $(G(\cdot) = M \cdot, F(\cdot) = H \cdot)$ evolution-observation system

$$\begin{aligned} x_{j+1} &= M x_j + \xi_{j+1}, \quad \xi_{j+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Sigma), \\ y_{j+1} &= H x_{j+1} + \eta_{j+1}, \quad \eta_{j+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma). \end{aligned}$$

Prediction: Suppose $x_j \sim \mathcal{N}(m_j, C_j)$. Then (cf. exercise from week 5)

$$x_{j+1} = Mx_j + \xi_{j+1} \sim \mathcal{N}(\widehat{m}_{j+1}, \widehat{C}_{j+1}),$$

where $\widehat{m}_{j+1} = Mm_j$ and $\widehat{C}_{j+1} = MC_jM^{\mathrm{T}} + \Sigma$.

Correction: Linear Gaussian setting implies $x_{j+1}|y_{j+1} \sim \mathcal{N}(m_{j+1}, C_{j+1})$, where (cf. exercise from week 7)

$$\begin{split} m_{j+1} &= \widehat{m}_{j+1} + \widehat{C}_{j+1} H^{\mathrm{T}} (H \widehat{C}_{j+1} H^{\mathrm{T}} + \Gamma)^{-1} (y_{j+1} - H \widehat{m}_{j+1}), \\ C_{j+1} &= \widehat{C}_{j+1} - \widehat{C}_{j+1} H^{\mathrm{T}} (H \widehat{C}_{j+1} H^{\mathrm{T}} + \Gamma)^{-1} H \widehat{C}_{j+1}. \end{split}$$

Remark: The expensive step in Kalman filtering is the computation of the so-called *Kalman gain* matrix:

$$\mathcal{K}_{j+1} = \widehat{\mathcal{C}}_{j+1} \mathcal{H}^{\mathrm{T}} (\mathcal{H}\widehat{\mathcal{C}}_{j+1}\mathcal{H}^{\mathrm{T}} + \Gamma)^{-1}.$$

Kalman filter algorithm

Given: Initial distribution for $x_0 \sim \mathcal{N}(m_0, C_0)$, where $m_0 \in \mathbb{R}^d$ and $C_0 \in \mathbb{R}^{d \times d}$ is symmetric and positive definite.

for
$$j = 0, 1, 2, ..., J - 1$$
, do
Prediction step:

$$\widehat{m}_{j+1} = M m_j$$
 $\widehat{C}_{j+1} = M C_j M^{\mathrm{T}} + \Sigma$

Correction step:

$$\begin{split} & \mathcal{K}_{j+1} = \widehat{C}_{j+1} \mathcal{H}^{\mathrm{T}} (\mathcal{H} \widehat{C}_{j+1} \mathcal{H}^{\mathrm{T}} + \Gamma)^{-1} \\ & m_{j+1} = \widehat{m}_{j+1} + \mathcal{K}_{j+1} (y_{j+1} - \mathcal{H} \widehat{m}_{j+1}) \\ & \mathcal{C}_{j+1} = \widehat{C}_{j+1} - \mathcal{K}_{j+1} \mathcal{H} \widehat{C}_{j+1} \end{split}$$

end for

Output: Predicted distributions for $x_j \sim \mathcal{N}(\widehat{m}_{j+1}, \widehat{C}_{j+1})$ and filtering distributions for $x_{j+1}|y_1, \ldots, y_{j+1} \sim \mathcal{N}(m_{j+1}, C_{j+1}), j = 0, \ldots, J-1$.

Extended Kalman filter (non-linear evolution model)

Consider non-linear $G : \mathbb{R}^d \to \mathbb{R}^d$ and linear $F(\cdot) = H \cdot$ with

$$\begin{aligned} x_{j+1} &= G(x_j) + \xi_{j+1}, \quad \xi_{j+1} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Sigma), \\ y_{j+1} &= Hx_{j+1} + \eta_{j+1}, \quad \eta_{j+1} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma), \end{aligned}$$

with $x_0 \sim \mathcal{N}(m_0, C_0)$.

Prediction: Suppose $x_j \sim \mathcal{N}(m_j, C_j)$. We can linearize

$$x_{j+1} = G(x_j) + \xi_{j+1} \approx G(m_j) + DG(m_j)(x_j - m_j) + \xi_j$$

An affine transformation is still Gaussian, so we obtain the approximations

$$\widehat{m}_{j+1} = G(m_j), \ \widehat{C}_{j+1} = DG(m_j)C_jDG(m_j)^{\mathrm{T}} + \Sigma$$

Correction: Now that $x_{j+1} \sim \mathcal{N}(\widehat{m}_{j+1}, \widehat{C}_{j+1})$, we can use the linear Gaussian setting to obtain $x_{j+1}|y_{j+1} \sim \mathcal{N}(m_{j+1}, C_{j+1})$ with

$$\begin{split} m_{j+1} &= \widehat{m}_{j+1} + \widehat{C}_{j+1} H^{\mathrm{T}} (H \widehat{C}_{j+1} H^{\mathrm{T}} + \Gamma)^{-1} (y_{j+1} - B \widehat{m}_{j+1}), \\ C_{j+1} &= \widehat{C}_{j+1} - \widehat{C}_{j+1} H^{\mathrm{T}} (H \widehat{C}_{j+1} H^{\mathrm{T}} + \Gamma)^{-1} H \widehat{C}_{j+1}. \end{split}$$

Ensemble Kalman filter (non-linear evolution model)

Consider

$$\begin{split} x_{j+1} &= G(x_j) + \xi_{j+1}, \quad \xi_{j+1} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Sigma), \\ y_{j+1} &= H x_{j+1} + \eta_{j+1}, \quad \eta_{j+1} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma), \end{split}$$

with $x_0 \sim \mathcal{N}(m_0, C_0)$.

The computation of the analytical predictive covariances and (in the non-linear setting) the Jacobi matrix become computationally inefficient and expensive for high-dimensional systems. The basic idea of ensemble Kalman filter is as follows:

- **(**) Draw a sample from the initial distribution of x_0 ("initial ensemble")
- Seplace the predictive mean \widehat{m}_{j+1} and covariance \widehat{C}_{j+1} as well as the filtering mean m_{j+1} and covariance C_{j+1} with their corresponding sample means and covariances by propagating the initial ensemble through the evolution-observation model.

Ensemble Kalman filter algorithm

Given: Ensemble size *N*. Initial ensemble $\{x_0^{(i)}\}_{i=1}^N$ drawn from the initial distribution of $x_0 \sim \mathcal{N}(m_0, C_0)$, where $m_0 \in \mathbb{R}^d$ and $C_0 \in \mathbb{R}^{d \times d}$ is symmetric and positive definite. Parameter $s \in \{0, 1\}$.

for
$$j = 0, 1, 2, \dots, J - 1$$
, do

Prediction step:

$$\begin{aligned} & \operatorname{draw} \, \xi_{j+1}^{(i)} \stackrel{\text{i.i.d.}}{\sim} \, \mathcal{N}(0, \Sigma), \ i = 1, \dots, N, \\ & \widehat{x}_{j+1}^{(i)} = G(x_j^{(i)}) + \xi_{j+1}^{(i)}, \quad i = 1, \dots, N, \\ & \widehat{m}_{j+1} = \frac{1}{N} \sum_{i=1}^N \widehat{x}_{j+1}^{(i)} \quad \text{and} \quad \widehat{C}_{j+1} = \frac{1}{N} \sum_{i=1}^n (\widehat{x}_{j+1}^{(i)} - \widehat{m}_{j+1}) (\widehat{x}_{j+1}^{(i)} - \widehat{m}_{j+1})^{\mathrm{T}}. \end{aligned}$$

Correction step:

draw
$$\eta_{j+1}^{(i)} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma), \quad i = 1, ..., N,$$

 $y_{j+1}^{(i)} = y_{j+1} + s\eta_{j+1}^{(i)}, \quad i = 1, ..., N,$
 $\mathcal{K}_{j+1} = \widehat{C}_{j+1}H^{\mathrm{T}}(H\widehat{C}_{j+1}H^{\mathrm{T}} + \Gamma)^{-1},$
 $x_{j+1}^{(i)} = \widehat{x}_{j+1}^{(i)} + \mathcal{K}_{j+1}(y_{j+1}^{(i)} - H\widehat{x}_{j+1}^{(i)}), \quad i = 1, ..., N$

end for

Output: Ensembles $\{x_j^{(i)}\}_{i=1}^N$, $j = 0, \dots, J$.

Remark:

- Setting the parameter s = 1 is suitable at approximating the Kalman filter in linear Gaussian settings: if each prediction particle $\tilde{x}_{j+1}^{(i)}$ is distributed according to a non-degenerate Gaussian distribution, then in the linear Gaussian setting the "corrected" particle $x_{j+1}^{(i)}$ will be Gaussian with mean and covariance that agree with the usual Kalman filter formulae. See Theorem 10.1 in Sanz-Alonso, Stuart, Taeb 2018.
- Setting the parameter s = 0 is natural if viewing the algorithm as a sequential optimizer in problems where the filtering distributions are not well approximated by Gaussians. See Section 8.1.2 in Sanz-Alonso, Stuart, Taeb 2018.

General evolution-observation model and particle filters

Consider the more general model

$$x_{j+1} = G(x_j, \xi_{j+1}), \quad j = 0, 1, \dots, J-1,$$

 $y_{j+1} = F(x_{j+1}, \eta_{j+1}), \quad j = 0, 1, \dots, J-1.$

The functions F and G are assumed to be known. We also assume that $\xi_{j+1} \perp x_j$ and $\eta_{j+1} \perp x_{j+1}$.

Observation and evolution models may be cumbersome or impossible to linearize (e.g., non-differentiable or no closed form). One may try Monte Carlo methods to simulate the distributions by random samples.

The goal in *particle filter* methods is to produce sequentially an ensemble of random samples $\{x_j^{(1)}, \ldots, x_j^{(N)}\}$ distributed according to the conditional probability distributions $\mathbb{P}(x_{j+1}|y_1, \ldots, y_j)$ (prediction) or $\mathbb{P}(x_j|y_1, \ldots, y_j)$ (filtering). The vectors $x_j^{(i)}$ are called *particles* of the sample, hence the name particle filter.

One straightforward particle filter method is known as the *sampling importance resampling* filter (also known as *SIR* or *bootstrap filter*).

Sampling importance resampling (Bootstrapping)

- Set j = 0 and generate an initial sample S₀ = {x₀⁽ⁱ⁾}^N_{i=1} by drawing from the density P(x₀). (This may require MCMC if the initial density is complicated, e.g., non-Gaussian.)
- **2** Prediction: Draw $\xi_{j+1}^{(i)}$ from the distribution of ξ_{j+1} and set $\widehat{x}_{j+1}^{(i)} = G(x_j^{(i)}, \xi_{j+1}^{(i)})$ for $1 \le i \le N$. Let $\widehat{S}_{j+1} = \{\widehat{x}_{j+1}^{(i)}\}_{i=1}^N$.
- Orrection: Assume that from the observational model y_j = F(x_j, η_j), we can calculate the likelihood density CP(y_j|x_j), j = 1, 2, ..., J, up to a multiplicative constant C > 0.[†] Calculate the importance of each propagated particle

$$\widehat{w}_{j+1}^{(i)} = C\mathbb{P}(y_{j+1}|\widehat{x}_{j+1}^{(i)}), \quad 1 \leq i \leq N,$$

and compute their relative importance

$$w_{j+1}^{(i)} = rac{\widehat{w}_{j+1}^{(i)}}{W}, \quad W = \sum_{i=1}^{N} \widehat{w}_{j+1}^{(i)}.$$

Resampling: draw a new sample $S_{j+1} = \{x_{j+1}^{(1)}, \ldots, x_{j+1}^{(N)}\}$ from the sample \widehat{S}_{j+1} , with the probability of drawing $\widehat{x}_{j+1}^{(i)}$ set equal to $w_{j+1}^{(i)}$. Set $j \leftarrow j+1$ and return to step 2.

[†]E.g., if $y_j = F(x_j) + \eta_j$, $\eta_j \sim \mathcal{N}(0, \Gamma)$, then $\mathbb{P}(y_j|x_j) \propto \exp(-\frac{1}{2}\|y_j - F(x_j)\|_{\Gamma^{-1}}^2)$.

Numerical example

Let us consider the heat equation with insulating boundary conditions

$$\left\{egin{aligned} &\partial_t u(x,t)=\partial_x^2(x,t), & x\in(0,1), \ t\in(0,\mathcal{T}), \ &\partial_x u(0,t)=\partial_x(1,t)=0, & t\in(0,\mathcal{T}), \ &u(x,0)=f(x), & x\in(0,1), \end{aligned}
ight.$$

where $f: [0,1] \to \mathbb{R}$ is a (poorly known) initial heat distribution.

The temperature is measured at discrete times $t_j = j\Delta t$ at the end points:

$$y_j = \begin{bmatrix} u(0,t_j)\\ u(1,t_j) \end{bmatrix} + \eta_j, \quad j \in \{1,\ldots,J\},$$

where $\eta_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \gamma^2 I_2).$

Goal: Track the target heat distribution u(x, t) for $t \in \{t_1, \ldots, t_J\}$ and $x \in (0, 1)$.

Discretization of the model problem

Divide the spatial interval into equally spaced subintervals with end points $x_j = j/n$, $0 \le j \le n$. Further, let $\boldsymbol{u}(t) := [u(x_1, t), \dots, u(x_{n-1}, t)]^{\mathrm{T}}$. We have

$$\partial_x^2 u(x_j, t) \approx n^2 (u(x_{j-1}, t) - 2u(x_j, t) + u(x_{j+1}, t)), \quad 1 \leq j \leq n-1.$$

The Neumann boundary conditions are approximated by

$$u(0,t) = u(x_1,t)$$
 and $u(1,t) = u(x_{n-1},t).$

This yields the semidiscretized evolution equation

We simulate the measurements y_j by solving the PDE for each time point $t_j = j\Delta t, j = 1, ..., J$. To avoid the inverse crime, the forward problem is solved using a dense computational grid with spatial discretization computed using n = 150 grid points. The values at the boundary $x \in \{0, 1\}$ are contaminated with simulated mean-zero Gaussian measurement noise with standard deviation $\gamma = 0.0001$. The actual inversion takes place on a computational grid with n = J = 100. As the analytical initial heat distribution, we use $f(x) = x^2(1-x)^2$. For Kalman filtering, we suppose that it is known that the temperature distribution follows the equation

$$\frac{\partial}{\partial t}\boldsymbol{u}(t) = L\boldsymbol{u}(t).$$

We discretize the evolution model using the backward Euler method:

$$\boldsymbol{u}(t_{j+1}) = (I - \Delta t L)^{-1} \boldsymbol{u}(t_j) + \xi_j,$$

where the innovation term is modeled as $\xi_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2 I)$ with $\sigma = 0.01$. Note that, in terms of the notation introduced previously, the evolution matrix is $M = (I - \Delta t L)^{-1}$ and the observation operator is $H = \begin{bmatrix} \mathbf{e}_1^T \\ \mathbf{e}_n^T \end{bmatrix}$. Finally, we assume that the initial heat distribution is poorly known and modeled using a Gaussian smoothness prior

 $\mathcal{N}(0,\,C_0),$

where $C_0 = 0.1 (D^T D)^{-1}$ with $D = n^{-2} L$.

We track the temperature distribution using both Kalman filtering and ensemble Kalman filtering. We display the filtered CM estimates for both approaches.

Remarks:

- The Kalman filter is optimal in the sense that it gives the best estimator of the mean in an online setting. (See Theorem 8.6 in Sanz-Alonso, Stuart, Taeb 2018).
- In the linear case $(G(\cdot) = M \cdot)$, the ensemble Kalman filter converges to the Kalman filter. When applicable, the ensemble Kalman filter is much more efficient than particle filters. A primary advantage of ensemble methods is that they can provide good state estimation even when the number of particles is *not* large.