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Recap from last week

Let H1 and H2 be separable real Hilbert spaces and let A : H1 → H2 be a
compact linear operator.

Find unknown x ∈ H1 such that

y = Ax , (1)

where data y ∈ H2 is given.
There exist orthonormal {vn} ⊂ H1 and {un} ⊂ H2 and λn ↘ 0 s.t.

Ax =
∑
n

λn〈x , vn〉un for all x ∈ H1.

There exists a solution to (1) iff

y = Py and
∑
n

1

λ2n
|〈y , un〉|2 <∞,

where P : H2 → Ran(A) is an orthogonal projection. The solutions
are of the form

x = x0 +
∑
n

1

λn
〈y , un〉vn for arbitrary x0 ∈ Ker(A).



Recap from last week – truncated SVD

For k ∈ N, k ≤ rank(A), there exists a unique xk ∈ H1 such that

Axk = Pky and xk ⊥ Ker(A),

where Pk : H2 → span{u1, . . . , uk} is an orthogonal projection. This
solution can be given as

xk =
k∑

n=1

1

λn
〈y , un〉vn.



Matrix SVD: Let the SVD of matrix A ∈ Rm×n be given by

A = UΛVT,

where Λ ∈ Rm×n has the non-negative singular values {λj}
min{m,n}
j=1 on its

diagonal and V ∈ Rn×n and U ∈ Rm×m are orthogonal matrices.†

The TSVD solution for 1 ≤ k ≤ p := rank(A) is given by

xk = VΛ†kU
Ty ,

where

Λ†k =



1/λ1 0 · · · 0 · · · 0

0 1/λ2
...

...
. . .

1/λk
0

...
. . .

...
0 · · · · · · 0


∈ Rn×m.

The matrix A† = VΛ†pUT is called the Moore–Penrose pseudoinverse of A.
†This means that the columns {vj}nj=1 of V form an orthonormal basis for Rn, and

similarly the columns {uj}mj=1 of U are an orhonormal basis of Rm.



Morozov discrepancy principle

Let H1 and H2 be separable real Hilbert spaces and A : H1 → H2 a
compact linear operator.

How to choose the spectral cut-off index k ≥ 1 in the TSVD problem

Ax = Pky and x ⊥ Ker(A)?

There is a rule of thumb called the Morozov discrepancy principle:

Suppose that the data y ∈ H2 is a noisy approximation of noiseless
“exact” data y0 ∈ H2. While y0 is unknown to us, we may have an
estimate on the noise level, e.g.,

‖y − y0‖ ≈ ε > 0.

We choose the smallest k ≥ 1 such that the residual satisfies

‖y − Axk‖ ≤ ε.

Intuitively, this means that we cannot expect the approximate solution to
yield a smaller residual than the measurement error without fitting the
solution to noise.



Q: When does an index k ≥ 1 satisfying ‖y − Axk‖ ≤ ε exist?
A: When ε > ‖Py − y‖ and rank(A) =∞, it follows from
Ran(A) = Ran(P) ⊥ Ran(I − P) that

‖Axk − y‖2 = ‖Axk − Py + Py − y‖2 = ‖Axk − Py‖2 + ‖(P − I )y‖2

=
∞∑

n=k+1

|〈y , un〉|2 + ‖(P − I )y‖2 k→∞−−−→ ‖Py − y‖2.

Due to the properties of the orthogonal projection,
‖Py − y‖ = infz∈Ran(A) ‖z − y‖, so this is the best we can do. (Note
however that there is no guarantee that prevents ‖xk‖ from exploding as
k →∞.)

On the other hand, if p = rank(A) <∞,

‖Axp − y‖ = ‖Ppy − y‖ = ‖Py − y‖.

One should usually avoid choosing the spectral cut-off to be this large in
practice.



Numerical example: backward heat equation

Let us consider the backward heat equation:
∂tu(x , t) = ∂2xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),

where f : (0, π)→ R is the initial heat distribution.

Forward problem: Given initial data f : (0, π)→ R, determine the heat
distribution u(·,T ) at time T > 0.

Inverse problem: Reconstruct the initial state f based on noisy
measurements of u(·,T ) at time T > 0.



Let us consider a simple discretization of the PDE
∂tu(x , t) = ∂2xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π).

Let xj = jh for j = 0, . . . , 100, where h = π/100 is the step size.

Zero Dirichlet boundary conditions imply that u(x0, t) = u(x100, t) = 0.

The spatial second derivative can be discretized using the stencils

∂2xu(x1, t) =
−2u(x1, t) + u(x2, t)

h2
+O(h2),

∂2xu(xj , t) =
u(xj−1, t)− 2u(xj , t) + u(xj+1, t)

h2
+O(h2) for j = 2, . . . , 98,

∂2xu(x99, t) =
u(x98, t)− 2u(x99, t)

h2
+O(h2).

Denote U(t) = (Uj(t))99j=1 = (u(xj , t))99j=1 and F = (f (xj))99j=1.



∂

∂t



U1(t)
U2(t)
U3(t)

...
U98(t)
U99(t)


=

1

h2



−2 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2


︸ ︷︷ ︸

=:B



U1(t)
U2(t)
U3(t)

...
U98(t)
U99(t)


.

After spatial discretization, our PDE has been transformed into the initial
value problem

U̇(t) = BU(t), U(0) = F .

At time t = T > 0, the discretized heat distribution U := U(T ) is given by

U = AF ,

where A = eTB ∈ R99×99 and

eM :=
∞∑
k=0

1

k!
Mk

is the matrix exponential (cf. function expm in MATLAB).



A note on simulating measurement data and inverse crimes

When simulating measurement data, one should take care not to use the
same computational model for inversion as the one which was used to
generate the measurements in the first place. This would lead to
unreasonably good reconstructions, since this is akin to multiplying a
matrix with its own inverse. This is known as an inverse crime. (Similar
concerns also apply to non-linear problems.)

With real-life measurement data, we do not have worry about this
phenomenon – measurements that come from nature are automatically
independent of any computational model we end up using for practical
inverse problems simulations.

A popular technique to avoid committing an inverse crime is using a
higher resolution computational model to generate the measurements and
interpolating the simulated data onto a coarser grid, where we plan to
carry out the actual computational inversion. Another good option is to
use an analytic solution, if one is readily available. We will use this
technique with the heat equation.



The forward problem of the heat equation
∂tu(x , t) = ∂2xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),

has the classical series solution

u(x , t) =
∞∑
n=1

f̂n e
−n2t sin(nx),

where the coefficients f̂n are the Fourier sine series coefficients of the
initial heat distribution f satisfying

f (x) =
∞∑
n=1

f̂n sin(nx), f̂n =
2

π

∫ π

0
f (x) sin(nx) dx .



Let us fix the ground truth

f (x) =

{
1 if x ∈ [1, 2],

0 if x ∈ (0, 1) ∪ (2, π).

It is easy to see that the Fourier sine coefficients are given by

f̂n =
2

nπ
(cos n − cos 2n).

Let us plug these into the forward solution at time t = T > 0

u(xj ,T ) =
∞∑
n=1

f̂n e
−n2T sin(nxj), j = 1, . . . , 99,

and add some simulated measurement noise!

We assume that the data U(T ) ∈ R99 at time T = 0.1 is contaminated
with mean-zero Gaussian noise with standard deviation 0.01, and that the
discrepancy between the measured data and the underlying “exact” data
equals the square root of the expected value of the squared norm of the
noise vector, i.e.,

ε =
√

99 · 0.012 ≈ 0.0995.
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Tikhonov regularization

The sequence of TSVD solutions {xk} minimizes the norm of the residual

‖Ax − y‖

as k tends to rank(A). Unfortunately, when inverse/ill-posed problems are
considered, it may also happen that

‖xk‖ → ∞ as k → rank(A).

In consequence, it appears reasonable to try minimizing the residual and
the norm of the solution simultaneously.



Definition

A Tikhonov regularized solution xδ ∈ H1 is a minimizer of the Tikhonov
functional

Fδ(x) := ‖Ax − y‖2 + δ‖x‖2,

where δ > 0 is called the regularization parameter.

Theorem

Let A : H1 → H2 be a compact linear operator with the singular
system (λn, vn, un). Then the Tikhonov regularized solution exists, is
unique, and is given by the formula

xδ = (A∗A + δI )−1A∗y =

p∑
n=1

λn
λ2n + δ

〈y , un〉vn,

where p = rank(A).

Remark. The Tikhonov regularized solution can be obtained without
knowing the SVD of A by solving xδ from (A∗A + δI )xδ = A∗y .



Proof. We make use of the Lax–Milgram lemma:
Lemma (Lax–Milgram)

Let H be a Hilbert space, and let B : H × H → R be a bilinear quadratic
form such that

|B(x , y)| ≤ C‖x‖‖y‖ for all x , y ∈ H,

B(x , x) ≥ c‖x‖2 for all x ∈ H

for some constants 0 < c ≤ C <∞. Then there exists a unique linear
boundedly invertible operator T : H → H such that

B(x , y) = 〈x ,Ty〉 for all y ∈ H,

‖T‖ ≤ C and ‖T−1‖ ≤ 1

c
.

In our case, we define the bilinear operator B(x , y) := 〈x , (A∗A + δI )y〉
and observe that |B(x , y)| ≤ (‖A‖2 + δ)‖x‖‖y‖ (boundedness) and
B(x , x) = 〈x , (A∗A + δI )x〉 = ‖Ax‖2 + δ‖x‖2 ≥ δ‖x‖2 (coercivity).
∴ (A∗A + δI )−1 exists such that ‖(A∗A + δI )−1‖ ≤ 1

δ . In particular,
xδ = (A∗A + δI )−1A∗y is well-defined.



Recall that Ax =
∑

n λn〈x , vn〉un and A∗y =
∑

n λn〈y , un〉vn. Especially,

A∗Ax =
∑
n

λ2n〈x , vn〉vn.

Since H1 = Ker(A)⊕Ker(A)⊥, we can write

xδ = Pxδ + Qxδ =
∑
n

〈xδ, vn〉vn + Qxδ,

where P : H1 → Ker(A)⊥ = span{vn} and Q : H1 → Ker(A) are
orthogonal projections. Thus

(A∗A + δI )xδ = A∗y ⇔
∑
n

(λ2n + δ)〈xδ, vn〉vn + Qxδ =
∑
n

λn〈y , un〉vn.

Equating terms yields that Qxδ = 0 and

(λ2n + δ)〈xδ, vn〉 = λn〈y , un〉 ⇔ 〈xδ, vn〉 =
λn

λ2n + δ
〈y , un〉,

as desired.



Finally, to show that xδ minimizes the quadratic functional
Fδ(x) = ‖Ax − y‖2 + δ‖x‖2, consider

x = xδ + z ,

where z ∈ H1 is arbitrary. Now

Fδ(x) = Fδ(xδ + z) = Fδ(xδ) + 〈z , (A∗A + δI )xδ − A∗y〉+ 〈z , (A∗A + δI )z〉
= Fδ(xδ) + 〈z , (A∗A + δI )z〉,

by definition of xδ.The last term is nonnegative and vanishes only if z = 0.
This proves the claim.



Morozov discrepancy principle for Tikhonov regularization

Suppose that the measurement y ∈ H2 is a noisy version of some
underlying “exact” data y0 ∈ H2, and that

‖y − y0‖ ≈ ε > 0.

In the framework of Tikhonov regularization, the Morozov discrepancy
principle tells us to choose the regularization parameter δ > 0 so that the
residual satisfies

‖y − Axδ‖ = ε.

It turns out that there is a unique regularization parameter satisfying this
condition if

‖y − Py‖ < ε < ‖y‖,

where P : H2 → Ran(A) is an orthogonal projection.



Properties of the Tikhonov regularized solution

Theorem
Let A : H1 → H2 be a compact linear operator with the singular system
(λn, vn, un). Let P : H2 → Ran(A) be an orthogonal projection. Then we
have the following:

(i) δ 7→ ‖Axδ − y‖ is a strictly increasing function of δ > 0.

(ii) ‖Py − y‖ = lim
δ→0+

‖Axδ − y‖ ≤ ‖Axδ − y‖ ≤ lim
δ→∞
‖Axδ − y‖ = ‖y‖.

(iii) If Py ∈ Ran(A), then xδ converges to the solution of the problem

Ax = Py and x ⊥ Ker(A)

as δ → 0+.

Corollary

The equation ‖Axδ − y‖ = ε has a unique solution δ = δ(ε) iff
‖(I − P)y‖ < ε < ‖y‖.
Interpretation: ‖(I − P)y‖ < ε means that any component in the data y orthogonal to

the range of A must be due to noise; ε < ‖y‖ means that the error level should not

exceed the signal level.



Proof. Suppose that the operator A has the SVD

Ax =
∑
n

λn〈x , vn〉un.

Then Avn = λnun, the orthogonal projection P : H2 → Ran(A) is

Py =
∑
n

〈y , un〉un,

and the Tikhonov regularized solution xδ and its image under A are

xδ =
∑
n

λn
λ2n + δ

〈y , un〉vn ⇒ Axδ =
∑
n

λ2n
λ2n + δ

〈y , un〉un.

(i) It follows that

‖Axδ − y‖2 = ‖Axδ − Py‖2 + ‖(I − P)y‖2

=
∑
n

(
λ2n

λ2n + δ
− 1

)2

|〈y , un〉|2 + ‖(I − P)y‖2

=
∑
n

(
δ

λ2n + δ

)2

|〈y , un〉|2 + ‖(I − P)y‖2.



We arrived at

‖Axδ − y‖2 =
∑
n

(
δ

λ2n + δ

)2

|〈y , un〉|2 + ‖(I − P)y‖2.

For each term of the sum,

d

dδ

(
δ

λ2n + δ

)2

=
2δλ2n

(λ2n + δ)3
> 0,

implying that the mapping δ 7→ ‖Axδ − y‖2 is strictly increasing.

(ii) It is easy to see that

‖Axδ − y‖2 =
∑
n

(
δ

λ2n + δ

)2

|〈y , un〉|2 + ‖(I − P)y‖2 δ→0+−−−−→ ‖(I − P)y‖2,

‖Axδ − y‖2 =
∑
n

(
δ

λ2n + δ

)2

|〈y , un〉|2 + ‖(I − P)y‖2

δ→∞−−−→ ‖Py‖2 + ‖(I − P)y‖2 = ‖y‖2.



(iii) Let Py ∈ Ran(A). This implies that there exists x ∈ Ker(A)⊥ such
that Ax = Py ; this is the minimum norm solution

x =
∑
n

1

λn
〈y , un〉vn,

for which it can be shown that

xδ =
∑
n

λn
λ2n + δ

〈y , un〉vn
δ→0+−−−−→

∑
n

1

λn
〈y , un〉vn = x .

Remark. In parts (ii) and (iii), one should take care when interchanging
the order of the limit and the summation, i.e., justifying the steps

lim
λ→0+

∑
n

=
∑
n

lim
λ→0+

and lim
λ→∞

∑
n

=
∑
n

lim
λ→∞

.

Standard techniques involve the monotone convergence theorem and the
dominated convergence theorem (note that these apply to infinite series as

well as integrals). In part (iii), it is helpful to observe that xδ
δ→0+−−−−→ x iff

〈xδ, φ〉
δ→0+−−−−→ 〈x , φ〉 for all φ ∈ H1 and ‖xδ‖

δ→0+−−−−→ ‖x‖.



Tikhonov regularization with matrices

Consider the special case H1 = Rn and H2 = Rm corresponding to the
matrix equation y = Ax . The Tikhonov functional takes the special form

Fδ(x) =

∥∥∥∥ [ A√
δI

]
x −

[
y
0

] ∥∥∥∥2, I ∈ Rn×n, 0 ∈ Rn.

The minimizer can be found by solving the least squares problem[
A√
δI

]T [
A√
δI

]
x =

[
A√
δI

]T [
y
0

]
or, equivalently,

(ATA + δI )x = ATy .

In MATLAB, this can be implemented simply as follows (MATLAB’s
mldivide or “backslash” operator automatically tries to solve the
corresponding least squares problem for non-square matrices):

K = [A;sqrt(delta)*eye(n)];

z = [y; zeros(n,1)];

xdelta = K\z;



Numerical example: backward heat equation

Let us revisit the backward heat equation from earlier:
∂tu(x , t) = ∂2xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),

where f : (0, π)→ R is the initial heat distribution.

We reconstruct the initial state f based on noisy measurements of
u(·,T ) at time T > 0 using Tikhonov regularization.

We assume that the data U(T ) ∈ R99 at time T = 0.1 is contaminated
with mean-zero Gaussian noise with standard deviation 0.01, and that the
discrepancy between the measured data and the underlying “exact” data
equals the square root of the expected value of the squared norm of the
noise vector, i.e.,

ε =
√

99 · 0.012 ≈ 0.0995.
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Tikhonov regularization for nonlinear problems

Unlike the TSVD, Tikhonov regularization can be generalized to nonlinear
problems as well. Consider a nonlinear operator A : H1 → H2 and the
problem

y = A(x).

A standard way of solving such a problem is via sequential linearizations,
which leads to solving a set of linear problems involving the Fréchet
derivative of operator A.

Definition

The function A : H1 → H2 is called Fréchet differentiable at x0 ∈ H1 if
there exists a continuous linear operator A′x0 : H1 → H2 such that

A(x + h) = A(x) + A′x0h + Wx0(z),

where ‖Wx0(z)‖ ≤ ε(x0, z)‖z‖ and the functional z 7→ ε(x0, z) tends to
zero as z → 0.

The linear operator A′x0 is called the Fréchet derivative of A at x0.



We are interested in minimizing

Fδ(x) = ‖A(x)− y‖2 + δ‖x‖2, δ > 0.

Since Fδ is no longer quadratic, it is unclear whether a unique minimizer
exists and typically the minimizer cannot be given by an explicit formula
even it exists.

Let A be Fréchet differentiable. The linearization of A around a given
point x0 leads to the approximation of the functional Fδ,

Fδ(x) ≈ F̃δ(x ; x0) = ‖A(x0) + A′x0(x − x0)− y‖2 + δ‖x‖2

= ‖A′x0(x)− g(y , x0)‖2 + δ‖x‖2,

where g(y , x0) := y − A(x0) + A′x0(x0).

From the previous discussion on the linear case, we know that the
minimizer of F̃δ(x ; x0) is given by

x = ((A′x0)∗Ax0 + δI )−1(A′x0)∗g(y , x0).



Minimization strategy with step size control

It may happen that the solution of the linearized problem does not reflect
adequately the nonlinearities of the original function. A better strategy is
to implement some form of step size control. For example, we might
design the following iterative method.

1. Pick an initial guess x0 and set k = 0.

Repeat:

2. Calculate the Fréchet derivative (A′x0).
3. Determine

x = ((A′xk )∗A′xk + δI )−1(A′xk )∗g(y , xk), g(y , xk) = y −A(xk) + A′xk xk ,

and define ∆x = x − xk .
4. Find step size s > 0 by minimizing the function

f (s) = ‖A(xk + s∆x)− y‖2 + ‖xk + s∆x‖2.

5. Set xk+1 = xk + s∆x and increase k ← k + 1.

until convergence.



Remarks on nonlinear Tikhonov regularization

In practice, evaluating A′xk is often the most difficult part.

For finite-dimensional operators, the Fréchet derivative is simply the
Jacobi matrix.

Depending on the nature of the nonlinearity, one might also consider
more “specialized” optimization methods (e.g., Gauss–Newton
algorithm, Levenberg–Marquardt algorithm...).



More general penalty terms

A more general way of defining the Tikhonov functional is

Fδ(x) = ‖Ax − y‖2 + δG (x),

where G : H1 → R≥0 takes non-negative values. The existence of a unique
minimizer for this kind of functional depends on the properties of G , as
does the workload needed for finding it.

One typical way of defining G is

G (x) = ‖L(x − x0)‖2,

where x0 ∈ H1 is a given reference vector and L is some linear operator.
The choice of x0 and L reflects our prior knowledge about “feasible”
solutions: Lx is some property that is known to be relatively close to the
reference value Lx0 for all reasonable solutions. (In the standard case
x0 = 0 and L = I , the solutions are “known” to lie relatively close to the
origin.)



The numerical implementation of Tikhonov regularization
with G (x) = ‖L(x − x0)‖2 is approximately as easy as for the standard
penalty term.

In the case where H1 = Rn and H2 = Rm, the operator L is some matrix in
R`+n and the Tikhonov functional can be given as

Fδ(x) =

∥∥∥∥ [ A√
δL

]
−
[

y√
δLx0

] ∥∥∥∥2.
Assuming that the singular values of K are bounded suitably far away from
zero, the Tikhonov solution can be computed in MATLAB as

K = [A; sqrt(delta)*L];

z = [y; sqrt(delta)*L*x0];

xdelta = K\z;


