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Today’s lecture

Numerical example: X-ray tomography

Regularization by truncated iterative methods: Landweber–Fridman
iteration



Numerical example: X-ray tomography

As an application, we consider X-ray tomography and describe here the
construction of the tomography matrix. We will return to this example
throughout our treatment of truncated iterative methods.



The following content follows roughly the material presented in the
following monographs.

J. Kaipio and E. Somersalo. Statistical and Computational Inverse
Problems. 2005.

J. L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems
with Practical Applications. 2012.

ASTRA Toolbox for 2D and 3D tomography:
https://www.astra-toolbox.com/

https://www.astra-toolbox.com/
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Radon transform in R2

Let L be a straight line in R2.

Any line in R2 can be parameterized as

L = {sω + tω⊥; t ∈ R} for some s ∈ R and ω ∈ S1,

where ω⊥ ⊥ ω.

Writing ω :=

[
cos θ
sin θ

]
, we get

L = L(s, θ) =

{
s

[
cos θ
sin θ

]
+ t

[
sin θ
− cos θ

]
; t ∈ R

}
, s ∈ R and θ ∈ [0, π).

The Radon transform of a continuous function f : R2 → R on L is defined
as

Rf (L) =

∫
L
f (x) |dx | =

∫ ∞
−∞

f (s cos θ + t sin θ, s sin θ − t cos θ) dt.
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Radon transform in R2

Let L be a straight line in R2.

Any line in R2 can be parameterized as

L = {sω + tω⊥; t ∈ R} for some s ∈ R and ω ∈ S1,

where ω⊥ ⊥ ω.

Writing ω =

[
cos θ
sin θ

]
, we get

L = L(s, θ) =

{
s

[
cos θ
sin θ

]
+ t

[
sin θ
− cos θ

]
; t ∈ R

}
, s ∈ R and θ ∈ [0, π).

The Radon transform of a continuous function f : R2 → R on L is defined
as

Rf (L) =

∫
L
f (x) |dx | =

∫ ∞
−∞

f (s cos θ + t sin θ, s sin θ − t cos θ) dt.



Let f be a nonnegative function modeling X-ray attenuation (density)
inside a physical body.

Beer–Lambert law:

Rf (L) = log
I0
I1
.



Let us consider the computational
domain [−1, 1]2. We divide this
region into n × n pixels and
approximate the density by a
piecewise constant function with
constant value

fi ,j in pixel Pi ,j

for i , j ∈ {1, . . . , n}.

Pi ,j := {(x , y); −1 + 2 j−1
n < x < −1 + 2 j

n , −1 + 2 i−1
n < y < −1 + 2 i

n}



It is convenient to reshape the
matrix/image (fi ,j) into a vector x of
length n2 so that

x(j−1)n+i = fi ,j , i , j ∈ {1, . . . , n}.

The image on the left illustrates the
new numbering corresponding to the
pixels.

Note that x = f(:) and f = reshape(x,n,n).



Measurement model

Let us consider a measurement setup where we take X-ray measurements
of an object using X-rays L(s1, θ), . . . , L(sK , θ) taken at angles
θ ∈ {θ1, . . . , θM}. The total number of X-rays is Q = MK .

For brevity, let us write L(m−1)K+k := L(sk , θm) for k ∈ {1, . . . ,K} and
m ∈ {1, . . . ,M}.

The measurement model is

y =


∫
L1
f (x)|dx |

...∫
LQ

f (x)|dx |

+ ε ≈


∑n2

j=1 A1,jxj
...∑n2

j=1 AQ,jxj

+ ε = Ax + ε,

where A ∈ RQ×n2 and Ai ,j is the distance that ray Li travels through pixel
j . Here, x is a vector containing the (piecewise constant) densities within
each pixel and ε is measurement noise.



L(m−1)K+k =

{
sk

[
cos θm
sin θm

]
+ t

[
sin θm
− cos θm

]
; t ∈ R

}
,

k = 1, . . . ,K ,
m = 1, . . . ,M.



Pixel-by-pixel construction of the tomography matrix A
(See the tomodemo.m file on the course page!)



Case cos θ = 0 and sin θ = 1:[
xd
yd

]
≤
[
s cos θ + t sin θ
s sin θ − t cos θ

]
<

[
xu
yu

]
⇔
[
xd
yd

]
≤
[
t
s

]
<

[
xu
yu

]
.

The distance that ray Lm travels through pixel k is

Am,k =

∫
Lm

χk |dx | =

∫
xd<t≤xu
yd≤s<yu

dt =

{
xu − xd if yd ≤ s < yu,

0 otherwise.

N.B. In here and in the following, χk = χk (x) denotes the characteristic function of the kth

pixel. In the above illustration, the pixel is denoted by the rectangle [xd, xu)× [yd, yu).



Case cos θ = 1 and sin θ = 0:[
xd
yd

]
≤
[
s cos θ + t sin θ
s sin θ − t cos θ

]
<

[
xu
yu

]
⇔
[
xd
yd

]
≤
[
s
−t

]
<

[
xu
yu

]
⇔
[
xd
−yu

]
<

[
s
t

]
≤
[
xu
−yd

]
.

The distance that ray Lm travels through pixel k is

Am,k =

∫
Lm

χk |dx | =

∫
−yu<t≤−yd
xd<s≤xu

dt =

{
yu − yd if xd < s ≤ xu,

0 otherwise.



Case cos θ > 0:[
xd
yd

]
<

[
s cos θ + t sin θ
s sin θ − t cos θ

]
<

[
xu
yu

]
⇔
[ xd−s cos θ

sin θ
s sin θ−yu

cos θ

]
<

[
t
t

]
<

[ xu−s cos θ
sin θ

s sin θ−yd
cos θ

]
.

The distance that ray Lm travels through pixel k is

Am,k =

∫
Lm

χk |dx | =

∫
max
{

xd−s cos θ

sin θ
, s sin θ−yu

cos θ

}
<t<min

{
xu−s cos θ

sin θ
,
s sin θ−yd

cos θ

} dt

=

(
min

{
xu − s cos θ

sin θ
,
s sin θ − yd

cos θ

}
−max

{
xd − s cos θ

sin θ
,
s sin θ − yu

cos θ

})
+

.



Case cos θ < 0:[
xd
yd

]
<

[
s cos θ + t sin θ
s sin θ − t cos θ

]
<

[
xu
yu

]
⇔
[
xd−s cos θ

sin θ
s sin θ − yu

]
<

[
t

t cos θ

]
<

[
xu−s cos θ

sin θ
s sin θ − yd

]
!⇔
[ xd−s cos θ

sin θ
s sin θ−yd

cos θ

]
<

[
t
t

]
<

[ xu−s cos θ
sin θ

s sin θ−yu
cos θ

]
.

The distance that ray Lm travels through pixel k is

Am,k =

∫
Lm

χk |dx | =

∫
max
{

xd−s cos θ

sin θ
,
s sin θ−yd

cos θ

}
<t<min

{
xu−s cos θ

sin θ
, s sin θ−yu

cos θ

} dt

=

(
min

{
xu − s cos θ

sin θ
,
s sin θ − yu

cos θ

}
−max

{
xd − s cos θ

sin θ
,
s sin θ − yd

cos θ

})
+

.



Discussion

Tomography problems can be classified into three classes based on the
nature of the measurement data:

Full angle tomography

– Sufficient number of measurements from all angles → not a very
ill-posed problem.

Limited angle tomography

– Data collected from a restricted angle of view → reconstructions very
sensitive to measurement error and it is not possible to reconstruct the
object perfectly (even with noiseless data). Applications include, e.g.,
dental imaging.

Sparse data tomography

– The data consist of only a few projection images, possibly from any
direction → extremely ill-posed inverse problem and prior knowledge
necessary for successful reconstructions. (E.g., minimizing a patient’s
radiation dose.)



Regularization by truncated iterative methods

For simplicity, we will only consider the case when

Ax = y (1)

is a system of linear equations, i.e., A ∈ Rm×n, x ∈ Rn, and y ∈ Rm.

Iterative methods attempt to solve (1) by finding successive
approximations for the solution starting from some initial guess.

Typically, the computation of such iterations involves multiplications
by A and its adjoint, but not explicit computation of inverse
operators. (Direct methods, such as Gaussian elimination, produce a
solution in a finite number of steps.)

Iterative methods are sometimes the only feasible choice if the
problem involves a large number of variables (e.g., in the order of
millions), in which case direct methods are prohibitively expensive.
Iterations are especially useful if multiplications by A are cheap: for
example, if A is sparse or it contains some other structure (e.g., it is a
multi-diagonal matrix arising from finite difference or finite element
approximation of an elliptic PDE).



Although iterative solvers have not usually been designed for ill-posed
equations, they often possess regularizing properties. If the iterations are
terminated before “the solution starts to fit to noise”, one often obtains
reasonable solutions for inverse problems.



Banach fixed point iteration

Let H be a Hilbert space and S ⊂ H. Consider a mapping, not necessarily
linear, T : H → H. We say that S is an invariant set for T if T (S) ⊂ S ,
that is,

T (x) ∈ S for all x ∈ S .

Moreover, T is a contraction on an invariant set S if there exists
0 ≤ κ < 1 such that

‖T (x)− T (y)‖ < κ‖x − y‖ for all x , y ∈ S .

Finally, a vector x ∈ H is called a fixed point of T if

T (x) = x .



Theorem (Banach fixed point theorem)

Let H be a Hilbert space and S ⊂ H a closed invariant set for the mapping
T : H → H. Assume further that T is a contraction in S . Then there
exists a unique fixed point x ∈ S such that T (x) = x . Furthermore, this
fixed point can be found by the fixed point iteration

x = lim
k→∞

xk , where xk+1 = T (xk),

for any x0 ∈ S .

Proof. Let T : H → H be a mapping, S ⊂ H a closed invariant set such
that T (S) ⊂ S , and let T be a contraction in S ,

‖T (x)− T (y)‖ < κ‖x − y‖ for all x , y ∈ S ,

with κ < 1. For all j > 1, we have

‖xj+1 − xj‖ = ‖T (xj)− T (xj−1)‖ < κ‖xj − xj−1‖.

Inductively, it follows that

‖xj+1 − xj‖ < κj−1‖x2 − x1‖.



For any n, k ∈ N, we have

‖xn+k − xn‖ ≤
k∑

j=1

‖xn+j − xn+j−1‖ <
k∑

j=1

κn+j−2‖x2 − x1‖

≤ κn−1

1− κ
‖x2 − x1‖,

where we used the formula for the geometric series. Therefore (xj) is a
Cauchy sequence†, and thus convergent (since H is a Hilbert space and
thus complete). The limit is in S since S is closed.

†Recall that (xn)n∈N is a Cauchy sequence if for every ε > 0, there is an index
m ∈ N such that k, j ≥ m ⇒ ‖xk − xj‖ < ε.



Landweber–Fridman iteration

Instead of considering the original equation

Ax = y ,

let us consider the normal equation

ATAx = ATy .

Recall that x ∈ Rn satisfies the normal equation iff it minimizes the
residual

‖Ax − y‖.

Moreover, there exists a unique element of Rn, given by x† := A†y , which
satisfies the normal equation and x† ∈ Ker(A)⊥ (the minimum norm
solution).



Let us define the affine mapping T : Rn → Rn by

T (x) = x + β(ATy − ATAx), β ∈ R.

Note that any solution of the normal equation ATAx = ATy is a fixed
point of T .

If β is small enough, then there is only one fixed point of T in Ker(A)⊥,
precisely x†, and it can be reached by the fixed point iteration if x0 = 0.

Theorem

Let λ1 be the largest singular value of matrix A and let 0 < β < 2/λ21 be
fixed. Then the fixed point iteration

xk+1 = T (xk), x0 = 0,

converges toward x† as k →∞.



Proof. Let S := Ker(A)⊥ = Ran(AT). Clearly T (S) ⊂ S since

T (x) = x + AT(βy − βAx) ∈ Ran(AT)

for all x ∈ Ran(AT). Thus S is invariant under T .

Recall that A and its transpose can be written using the SVD of A as

Ax =

p∑
j=1

λj(v
T
j x)uj and ATy =

p∑
j=1

λj(u
T
j y)vj ,

where p = rank(A) and λj are the positive singular values of A. The
singular vectors {vj}pj=1 and {uj}pj=1 span S = Ker(A)⊥ and Ran(A),
respectively, and thus

x =

p∑
j=1

(vTj x)vj for all x ∈ S .



Let x , z ∈ S . Then x − z ∈ S and

T (x)− T (z) = (x − z)− βATA(x − z)

=

p∑
j=1

vTj (x − z)vj − β
p∑

j=1

λ2j (vTj (x − z))vj

=

p∑
j=1

(1− βλ2j )(vTj (x − z))vj .

Since λ1 is the largest singular value, it follows that

−1 < βλ2j − 1 ≤ βλ21 − 1 < 2− 1 = 1 for all j ∈ {1, . . . , p}.

Hence
κ := max

j=1,...,p
|βλ2j − 1| < 1.



In consequence,

‖T (x)− T (y)‖2 ≤
∑
j=1

(1− βλ2j )2(vTj (x − z))2

≤ κ2
p∑

j=1

(vTj (x − z))2 = κ2‖x − z‖2,

which shows that T is a contraction on S . Since S is a closed invariant set
for T , there exists a unique fixed point of T in S .

Finally, recall that x† = A†y belongs to S = Ker(A)⊥ and it satisfies the
normal equation. Since x0 = 0 is in S (it is orthogonal to all vectors), the
fixed point iteration starting from x0 converges to x†.



Regularization properties of Landweber–Fridman

In what follows, we will assume that 0 < β < 2/λ21.

In the exercises of week 3, it will be shown that the kth iterate of the
Landweber–Fridman iteration can be written explicitly as

xk =

p∑
j=1

1

λj
(1− (1− βλ2j )k)(uTj y)vj , k = 0, 1, . . . .

Since we assumed |1− βλ2j | < 1, then

(1− βλ2j )k
k→∞−−−→ 0.

This is what one would expect since

x† =

p∑
j=1

1

λj
(uTj y)vj .



While k ∈ N is finite, the coefficients appearing in the series representation

xk =

p∑
j=1

1

λj
(1− (1− βλ2j )k)(uTj y)vj (2)

satisfy

1

λj
(1− (1− βλ2j )k) =

1

λj

(
1−

k∑
`=0

(
k

`

)
(−1)`β`λ2`j

)

=
1

λj

k∑
`=1

(
k

`

)
(−1)`+1β`λ2`j =

k∑
`=1

(
k

`

)
(−1)`+1β`λ2`−1j ,

which converges to zero as λj → 0 (for a fixed k).

In consequence, while k is “small enough”, no coefficient of (uTj y)vj in (2)
is so large that the component of the measurement noise in the direction
uj is amplified in an uncontrolled manner. (Compare with Tikhonov
regularization, where the corresponding coefficients are λj/(λ2j + δ).)



Discrepancy principle for Landweber–Fridman iteration

Let y ∈ Rm be a noisy version of some underlying “exact” data vector
y0 ∈ Rm, and assume that

‖y − y0‖ ≈ ε > 0.

The Morozov discrepancy principle for the Landweber–Fridman iteration is
analogous to the truncated SVD: choose the smallest k ≥ 0 such that the
residual satisfies

‖y − Axk‖ ≤ ε.



Q: When does an index k ≥ 1 satisfying ‖y − Axk‖ ≤ ε exist?
A: When ε > ‖Py − y‖ = ‖y − A(A†y)‖ = ‖y − Ax†‖, where P = AA† is
the orthogonal projection onto Ran(A) (cf. 1st exercises) and x† = A†y is
the minimum norm solution. Since the sequence (xk)∞k=0 converges to x†,
for any ε > ‖y − Ax†‖, there exists k = kε ∈ N such that

‖xk − x†‖ ≤ 1

‖A‖
(ε− ‖y − Ax†‖).

By the reverse triangle inequality

‖y − Axk‖ − ‖y − Ax†‖ ≤ ‖(y − Axk)− (y − Ax†)‖
≤ ‖A‖‖xk − x†‖
≤ ε− ‖y − Ax†‖.

From this, we deduce that ‖y − Axk‖ ≤ ε as desired.


