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Today's lecture

@ Numerical example: X-ray tomography

@ Regularization by truncated iterative methods: Landweber—Fridman
iteration



Numerical example: X-ray tomography

As an application, we consider X-ray tomography and describe here the
construction of the tomography matrix. We will return to this example
throughout our treatment of truncated iterative methods.



The following content follows roughly the material presented in the
following monographs.

[§ J. Kaipio and E. Somersalo. Statistical and Computational Inverse
Problems. 2005.

[3 J. L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems
with Practical Applications. 2012.

ASTRA Toolbox for 2D and 3D tomography:
https://www.astra-toolbox.com/


https://www.astra-toolbox.com/
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Radon transform in R?

Let L be a straight line in R.

Any line in R? can be parameterized as

L= {sw+tw; teR} forsomescRandweS!

where wt 1 w.
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Radon transform in R?

Let L be a straight line in R.

Any line in R? can be parameterized as
L ={sw+tw"; tcR} forsomescRandwec St
where w | w.
cosf
Writi =
riting w [sm 9] , we get

sin 6

L=L(s,0)= {s [COSH} +t[ sin 0 }; tER}, s€Rand 0 € [0,m).
cos

The Radon transform of a continuous function f: R2 — R on L is defined
as

Rf(L):/f(x) ]dx:/ f(scosf + tsin@,ssinf — tcos ) dt.
L

— 00



Let f be a nonnegative function modeling X-ray attenuation (density)
inside a physical body.

L

Iy

Beer—Lambert law: }
RF(L) = log .
h
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Note

that x

It is convenient to reshape the
matrix/image (f; ;) into a vector x of
length n? so that

X(jfl)n+i = fl,ju Ia./ € {1) SRR n}‘

The image on the left illustrates the
new numbering corresponding to the
pixels.

f(:) and £ = reshape(x,n,n).



Measurement model

Let us consider a measurement setup where we take X-ray measurements
of an object using X-rays L(s1,0), ..., L(sk,0) taken at angles
0 €{61,...,0m}. The total number of X-rays is @ = MK.

For brevity, let us write L(m_1)k4k := L(Sk,0m) for k € {1,...,K} and
me{l,...,M}.

The measurement model is
2
le f(x)]dx\ > Avyx
y = +er : +e=Ax+¢,
2
f/_ |dx] 21 AQ X
where A € RO%™ and A;;j is the distance that ray L; travels through pixel

J. Here, x is a vector containing the (piecewise constant) densities within
each pixel and € is measurement noise.



cos O, sinf,,
Lim—1yk+ic = {Sk Lin Gm] +t [ ] , teER

k=1,
m=1,
—cos b,
0= 0. 0 = 0.349066 0 = 0.698132
0 =1.0472 0 = 1.39626 0 =1.74533
0 = 2.0944 0 = 2.44346 = 2.79253




Pixel-by-pixel construction of the tomography matrix A
(See the tomodemo.m file on the course page!)



Yul

Case cos@ = 0 and sinf = 1:
xa| o sc_os@—i— tsind < X
va| ~ |ssinf — tcos6 Ya

<=l <)

Yar

Zq Ty

The distance that ray L, travels through pixel k is

Xa—Xqa ifyqg <s <y,
Am,k:/ Xk|dx|: / dt — 0u d Ya > Yu
Lm

otherwise.
Xg<t<xy
Ya<s<yu

N.B. In here and in the following, xx = x«(x) denotes the characteristic function of the k*

pixel. In the above illustration, the pixel is denoted by the rectangle [xg, xu) X [yd,Yu)-



Case cos =1 and sinf = 0:
Xq] scosf + tsinf Xy
<
[yd_ - [ssinH— tcos@] < [yu]
BZ! —t Yu

o ml<[l=[z)

Yar
Tq Ty
The distance that ray L, travels through pixel k is
— if xq <s<x
Amic= [ laxl= [ ap= g TS
L, 0 otherwise.
—yu<t<—yq

Xq<s<xy



Yul

Case cosf > 0:
xa| sc956+tsin9 < P
Yd ssinf — tcosd Yu

Xq—S cos O t Xy—S cos
N in6 in6
|:ssi?1”é—yu:| < |:t:| < |:ssi?1|ré—yd:| .

cos f cos 6

Yar

Zq Ty

The distance that ray L, travels through pixel k is

Am,k :/ X k |dX’ = / dt

Xxq—Scos @ ssinefyu} . {xu—scc>59 ssin6—yq
max { sin O ' cosf <t<min sin O > cosf

. [xy—scosf ssinf — yq X4 — Sscosf ssinf — yy
= [ min . , — max . , )
sind cos sin 6 cos 6 n




Yur
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sind cos sin 6 cos 6 n



Discussion

Tomography problems can be classified into three classes based on the
nature of the measurement data:

@ Full angle tomography
— Sufficient number of measurements from all angles — not a very
ill-posed problem.

@ Limited angle tomography
— Data collected from a restricted angle of view — reconstructions very
sensitive to measurement error and it is not possible to reconstruct the
object perfectly (even with noiseless data). Applications include, e.g.,
dental imaging.
@ Sparse data tomography
— The data consist of only a few projection images, possibly from any
direction — extremely ill-posed inverse problem and prior knowledge
necessary for successful reconstructions. (E.g., minimizing a patient’s
radiation dose.)



Regularization by truncated iterative methods

For simplicity, we will only consider the case when
Ax =y (1)

is a system of linear equations, i.e., A€ R™*" x € R", and y € R™.

@ lterative methods attempt to solve (1) by finding successive
approximations for the solution starting from some initial guess.

@ Typically, the computation of such iterations involves multiplications
by A and its adjoint, but not explicit computation of inverse
operators. (Direct methods, such as Gaussian elimination, produce a
solution in a finite number of steps.)

@ lterative methods are sometimes the only feasible choice if the
problem involves a large number of variables (e.g., in the order of
millions), in which case direct methods are prohibitively expensive.
Iterations are especially useful if multiplications by A are cheap: for
example, if A is sparse or it contains some other structure (e.g., itisa
multi-diagonal matrix arising from finite difference or finite element
approximation of an elliptic PDE).



Although iterative solvers have not usually been designed for ill-posed
equations, they often possess regularizing properties. If the iterations are
terminated before “the solution starts to fit to noise”, one often obtains
reasonable solutions for inverse problems.



Banach fixed point iteration

Let H be a Hilbert space and S C H. Consider a mapping, not necessarily

linear, T: H— H. We say that S is an invariant set for T if T(S) C S,
that is,

T(x)eS forall xeS.

Moreover, T is a contraction on an invariant set S if there exists
0 < k < 1 such that

IT(x) = T(y)| <&llx—y| forallx,y€S.
Finally, a vector x € H is called a fixed point of T if

T(x) = x.



Theorem (Banach fixed point theorem)

Let H be a Hilbert space and S C H a closed invariant set for the mapping
T: H — H. Assume further that T is a contraction in S. Then there
exists a unique fixed point x € S such that T(x) = x. Furthermore, this
fixed point can be found by the fixed point iteration

x = lim xx, where xx11 = T(xx),
k—o00

for any xg € S.

Proof. Let T: H— H be a mapping, S C H a closed invariant set such
that 7(S) C S, and let T be a contraction in S,

ITC) = T < sllx =yl forallx,y €S,
with k < 1. For all j > 1, we have
X410 = Xl = [T () = Tl < sllxg = xj-al-
Inductively, it follows that

X401 — Xj|| < K% — x|




For any n, k € N, we have

k k
Ik = Xall <D lxas = Xasjor ]l < DR 2 e — x|
= =1
,{n—l
< —
< T lbe = xall,

where we used the formula for the geometric series. Therefore (x;) is a
Cauchy sequencel, and thus convergent (since H is a Hilbert space and
thus complete). The limit is in S since S is closed. O

TRecall that (x,)sen is a Cauchy sequence if for every & > 0, there is an index
m € Nsuch that k,j > m = ||x — x| <e.



Landweber—Fridman iteration

Instead of considering the original equation
Ax =y,
let us consider the normal equation
ATAx = ATy.

Recall that x € R” satisfies the normal equation iff it minimizes the
residual
[Ax — yl|.

Moreover, there exists a unique element of R”, given by x' := Afy, which
satisfies the normal equation and x' € Ker(A)* (the minimum norm
solution).



Let us define the affine mapping T: R” — R” by
T(x) =x+ B(ATy — ATAx), BeR.

Note that any solution of the normal equation ATAx = ATy is a fixed
point of T.

If 3 is small enough, then there is only one fixed point of T in Ker(A)*,
precisely xT, and it can be reached by the fixed point iteration if xg = 0.

Theorem

Let A1 be the largest singular value of matrix A and let 0 < 3 < 2/)\% be
fixed. Then the fixed point iteration

Xk+1 = T(xk), x =0,

converges toward x' as k — co.




Proof. Let S := Ker(A)* = Ran(AT). Clearly T(S) C S since
T(x) = x + AT(By — BAx) € Ran(AT)
for all x € Ran(AT). Thus S is invariant under T.

Recall that A and its transpose can be written using the SVD of A as

P P
Ax = Z )\j(vJ-Tx)uj and Aty = Z)\j(uJTy)vj,
j=1 j=1

where p = rank(A) and ); are the positive singular values of A. The
singular vectors {v;}?_; and {u;}?_; span S = Ker(A)* and Ran(A),
respectively, and thus

p
X = Z(VJ-TX)VJ' for all x € S.



Let x,z€ S. Then x —z € S and

T(x) = T(2) = (x — 2z) = BATA(x — Z)
:ZVJTX—Z ﬁZ)\Z (x — 2)
p
=3 - BN - 2y

Since A1 is the largest singular value, it follows that

—1<BN-1<BA—-1<2-1=1 forallje{L,...,

Hence

K:= max |ﬁ)\ -1 <1
J=Lep

p}-



In consequence,

IT(x) = T < Z(l = BAP (v} (x — 2))

p
<Ry (y(x—2)) = Klx - 2|,

which shows that T is a contraction on S. Since S is a closed invariant set
for T, there exists a unique fixed point of T in S.

Finally, recall that x' = ATy belongs to S = Ker(A)* and it satisfies the
normal equation. Since xp = 0 is in S (it is orthogonal to all vectors), the
fixed point iteration starting from xo converges to x. O



Regularization properties of Landweber—Fridman

In what follows, we will assume that 0 < 3 < 2/A3.

In the exercises of week 3, it will be shown that the k' iterate of the
Landweber—Fridman iteration can be written explicitly as

p
1
=y (= (=B y)y, k=01
Since we assumed |1 — SA?| < 1, then

(1 - BA2)k X2, 0,

This is what one would expect since



While k € N is finite, the coefficients appearing in the series representation
1
Xi IZy(l—(l—ﬁAf) )(ufy)y (2)

satisfy

;j(l —(1- BN = i(l oy (’2) (_1)%%)

£=0
)\ Z ( > f-‘rl/@f)\Zf i (Z)(_l)f-‘rlﬁf)\?g—l’
1 =1 (=1

which converges to zero as A\j — 0 (for a fixed k).

In consequence, while k is “small enough”, no coefficient of (uJ-Ty)\/j in (2)
is so large that the component of the measurement noise in the direction
uj is amplified in an uncontrolled manner. (Compare with Tikhonov
regularization, where the corresponding coefficients are )\J-/()\J2 +9).)



Discrepancy principle for Landweber—Fridman iteration

Let y € R™ be a noisy version of some underlying “exact” data vector
yo € R™, and assume that

ly =yl = &>0.

The Morozov discrepancy principle for the Landweber—Fridman iteration is

analogous to the truncated SVD: choose the smallest k > 0 such that the
residual satisfies

ly — Axi|l <e.



Q: When does an index k > 1 satisfying ||y — Axk|| < e exist?

A: When ¢ > ||Py — y|| = |ly — A(ATy)|| = |ly — AxT||, where P = AAT is
the orthogonal projection onto Ran(A) (cf. 1% exercises) and xT = Afy is
the minimum norm solution. Since the sequence (xx)$, converges to x',
for any € > ||y — AxT||, there exists k = k. € N such that

e = x| < (e = lly = AXTY)).

1
1Al
By the reverse triangle inequality

ly = Axill = Ily = AxT| < [I(y — Axi) — (v — AXT)]|
< (A lx — x|
<e— |y —Axf|.

From this, we deduce that ||y — Axk|| < € as desired.



