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Krylov subspace methods

Krylov subspace methods are iterative solvers for (large scale) matrix
equations of the form Ax = y , A ∈ Rn×n. In general terms, the solution
vector x ∈ Rn is approximated as a linear combination of vectors of the
form u, Au, A2u, . . ., with some given u ∈ Rn. If multiplication by A is
cheap – for example, when A is sparse – Krylov subspace methods can be
particularly efficient.

We consider only the most well-known Krylov subspace method, the
conjugate gradient method. It is worth mentioning that other methods in
this class include, e.g., the generalized minimum residual method
(GMRES) and the biconjugate gradient method (BiCG).



Assumptions on A and A-dependent inner product

In what follows, we assume that the system matrix A ∈ Rn×n is symmetric
and positive definite:

AT = A and uTAu > 0 for all u ∈ Rn \ {0}.

Note that this implies that A is injective.† By the fundamental theorem of
linear algebra, A is invertible. Furthermore, the inverse A−1 ∈ Rn×n is also
symmetric and positive definite.

We define
〈u, v〉A := uTAv and ‖u‖A :=

√
〈u, u〉A.

Since A was assumed to be symmetric and positive definite, it is
straightforward to check that 〈·, ·〉A : Rn × Rn → R defines an inner
product on Rn. In consequence, ‖ · ‖A : Rn → R is a norm.

†Ax = Ay ⇒ A(x − y) = 0 ⇒ (x − y)TA(x − y) = 0 ⇒ x − y = 0.



Error, residual, and minimization problem

Let x∗ = A−1y ∈ Rn denote the unique solution of the equation

Ax = y

for a given y ∈ Rn. We define the error and residual corresponding to
some approximate solution x ∈ Rn by

e = x∗ − x and r = y − Ax = Ae.

Let φ : Rn → R be the A-dependent quadratic functional

φ(x) = ‖e‖2A = eTAe = rTA−1r = ‖r‖2A−1 .

Since ‖ · ‖A is a norm, φ(x) ≥ 0 for all x ∈ Rn and

φ(x) = 0 ⇔ e = 0 ⇔ x = x∗.

Minimizing φ is equivalent to solving Ax = y.



Minimizing φ in a given direction

We cannot directly evaluate the functional φ since this would require
knowledge of the unknown x∗ (or, equivalently, A−1). Since our goal is to
approximate the solution x∗ iteratively, assuming that it is known is out of
the question.

Fortunately, it turns out that if we have some initial guess x0 ∈ Rn and
some search direction 0 6= s0 ∈ Rn, we can find the minimizer of φ over
the line

S0 = {x ∈ Rn | x = x0 + αs0, α ∈ R}.

without having to evaluate φ or having knowledge of x∗.



Lemma

Let 0 6= s0 ∈ Rn be a search direction. The minimum of

R 3 α 7→ φ(x0 + αs0) ∈ R

is attained at

α = α0 :=
sT0 r0
‖s0‖2A

=
sT0 r0
sT0 As0

,

where r0 := y − Ax0 is the residual corresponding to the initial guess
x0 ∈ Rn.

Proof: The residual corresponding to x = x0 + αs0 is

r = y − Ax = y − Ax0 − αAs0 = r0 − αAs0
and thus

φ(x) = rTA−1r = (r0 − αAs0)TA−1(r0 − αAs0)

= rT0 A
−1r0 − 2αsT0 r0 + α2sT0 As0.

Since sT0 As0 > 0, this is a parabola that opens upward as a function of α.
The minimum is found at the zero of the derivative w.r.t. α, i.e.,

−2sT0 r0 + 2αsT0 As0 = 0⇔ α =
sT0 r0
sT0 As0

.



Sequential minimization of φ

Suppose that we are given a sequence of non-zero search directions
{sk} ⊂ Rn. Then we can produce a sequence of approximate solutions by
first choosing x0 and then iteratively minimizing φ on the line passing
through xk in the direction of sk as follows:

xk+1 = xk + αksk , with αk =
sTk rk

sTk Ask
, k = 0, 1, . . . ,

where rk = y − Axk is the residual corresponding to the kth iterate.

By construction, φ(xk+1) ≤ φ(xk), so {φ(xk)} is a decreasing sequence of
real numbers.

As yet, it is not obvious how to choose the search directions {sk}
efficiently. The strategy will be to first consider minimization of φ over a
hyperplane, and then seek a construction of {sk} for which the sequential
minimization strategy coincides with minimization over a hyperplane.



Minimization of φ over a hyperplane

Let {s0, . . . , sk} be a set of linearly independent search directions. We
consider minimization of φ on the hyperplane

Sk = {x ∈ Rn | x = x0 + h0s0 + · · ·+ hksk , h0, . . . , hk ∈ R}
= {x ∈ Rn | x = x0 + Skh, h ∈ Rk+1},

where x0 ∈ Rn is the initial guess and Sk = [s0, . . . , sk ] ∈ Rn×(k+1).

Lemma

Let {s0, . . . , sk} be a set of linearly independent search directions. The
function

Rk+1 3 h 7→ φ(x0 + Skh) ∈ R

attains its minimum at

h = h∗ = (ST
k ASk)−1ST

k r0,

where r0 = y − Ax0 is the residual corresponding to the initial guess
x0 ∈ Rn.



Proof: We wish to show that h∗ = (ST
k ASk)−1ST

k r0 satisfies

h∗ = argmin
h∈Rk+1

φ(x0 + Skh),

where Sk = [s0, . . . , sk ] ∈ Rn×(k+1) contains the search directions.

To show that the expression for h∗ is well-defined, let us first show that
ST
k ASk ∈ R(k+1)×(k+1) is invertible. By the positive definiteness of A,

ST
k ASkz = 0 ⇒ zTST

k ASkz = 0 ⇒ ‖Skz‖2A = 0 ⇒ Skz = 0,

which means that z = 0 since the columns of Sk are linearly independent.
Hence ST

k ASk is injective, and (ST
k ASk)−1 exists by the fundamental

theorem of linear algebra.

The residual corresponding to x = x0 + Skh satisfies

r = y − A(x0 + Skh) = r0 − ASkh,

thus (recall that φ(x) = rTA−1r for r = y − Ax)

φ(x0 + Skh) = (r0 − ASkh)TA−1(r0 − ASkh)

= rT0 A
−1r0 − 2rT0 Skh + hTST

k ASkh.



We obtained

φ(x0 + Skh) = rT0 A
−1r0 − 2rT0 Skh + hTST

k ASkh.

The Hessian of h 7→ φ(x0 +Skh) is 2ST
k ASk , which is positive definite since

uT(ST
k ASk)u = (Sku)TA(Sku) ≥ 0 for all u ∈ Rk+1,

where equality holds iff Sku = 0 ⇔ u = 0. Hence h 7→ φ(x0 + Skh) is
convex, and we can find its unique minimizer by solving the zero point of
its gradient:

0 = ∇hφ(x0 + Skh) = 2ST
k ASkh − 2ST

k r0

⇔ h = (ST
k ASk)−1ST

k r0.



Numerical example

Let us consider minimization with the steepest descent directions

sk = −∇φ(xk) = 2(y − Axk), k = 0, 1, . . . . (1)

In general, the convergence of the sequence {xk} toward the global
minimizer x∗ = A−1y can be fairly slow. We demonstrate this with the
following example.

Let

A =

[
1 0
0 5

]
and y =

[
0
0

]
.

Now
φ(x) = x21 + 5x22 .

We plot the level contours of φ and the sequence {xk}5k=0 starting from
x0 = (1, 0.3)T. The true solution x∗ = (0, 0)T is marked with a blue cross.

We also illustrate minimization over the hyperplanes S0 and S1,
i.e., x0+S0h∗ and x0+S1h∗ with S0 = [s0] ∈ R2×1 and S1 = [s0, s1] ∈ R2×2,
where s0 and s1 were computed using the sequential method (1).
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Figure: Left: Minimization using steepest descent search directions sk = −∇φ(xk)
and the sequential minimization technique. Right: Minimization over the
hyperplanes S0 and S1 spanned by the steepest descent directions from the left
picture. Notably, the hyperplane method converges to the actual solution
x∗ = (0, 0)T (marked with a blue cross) when k = n = 2.



Finding a minimizer of φ over the hyperplane

Sk = {x ∈ Rn | x = x0 + Skh, h ∈ Rk+1}

generally involves inverting a (k + 1)× (k + 1) matrix, which we would like
to avoid.

On the other hand, minimizing φ sequentially over the directions s0, . . . , sk
may not result in as good approximation as doing the minimization over
the whole hyperplane Sk at once.

However, it turns out that sequential minimization can be used to produce
the minimizer over Sk as long as the search directions {s0, . . . , sk} are
chosen in a clever way.

Goal: choose {s0, . . . , sk} so that each iteration of the sequential
minimization algorithm coincides with the minimizer over the respective
hyperplanes S0, . . ., Sk .



A-conjugate search directions

We say that non-zero vectors {s0, . . . , sk} ⊂ Rn are A-conjugate if

〈si , sj〉A = sTi Asj = 0 whenever i 6= j .

That is, {s0, . . . , sk} are A-conjugate if they are orthogonal with respect to
the inner product 〈·, ·〉A.

We can represent the A-conjugacy condition compactly using the matrix
Sk = [s0, . . . , sk ] ∈ Rn×(k+1):

ST
k ASk =

s
T
0
...
sTk

 [As0, . . . ,Ask ] = diag(d0, . . . , dk) ∈ R(k+1)×(k+1), (2)

where dj = sTj Asj > 0, j = 0, . . . , k , since A was assumed to be positive
definite.



The following theorem provides the connection between sequential
minimization and minimization over hyperplanes, when the search
directions are chosen to be A-conjugate.

Theorem

Let x0 ∈ Rn be an initial guess and suppose that the search directions
{s0, . . . , sk} ⊂ Rn are non-zero and A-conjugate. Then the sequential
minimizer of φ over these directions, i.e., xk+1 ∈ Rn obtained by the
iteration

xj+1 = xj + αjsj , with αj =
sTj rj

sTj Asj
, j = 0, . . . , k ,

is the minimizer of φ on the hyperplane

Sk = {x ∈ Rn | x = x0 + Skh, h ∈ Rk+1},

where Sk = [s0, . . . , sk ] ∈ Rn×(k+1). That is to say,

xk+1 = x0 + Skh∗ = x0 + Sk(ST
k ASk)−1ST

k r0,

where r0 = y − Ax0 is the residual corresponding to the initial guess x0.



Proof. Let aj = (α0, . . . , αj)
T ∈ Rj+1, where αj =

sTj rj

sTj Asj
are the line

search parameters of the sequential minimization algorithm. Then

xj = x0 +

j−1∑
i=0

αi si = x0 + Sj−1aj−1, j = 1, . . . , k + 1.

The residual corresponding to xj is

rj = y − Axj = (y − Ax0)− ASj−1aj−1 = r0 − ASj−1aj−1

and hence

sTj rj = sTj r0 − sTj ASj−1aj−1 = sTj r0 − sTj [As0, . . . ,Asj−1]︸ ︷︷ ︸
=0

aj−1,

since sTj Asi , i < j , due to A-conjugacy. Thus we obtain the simplified
expression

αj =
sTj rj

sTj Asj
=

sTj r0

sTj Asj
, j = 0, . . . , k .



When the search directions are A-conjugate, we obtained for the line
search parameters of the sequential minimization parameter that

αj =
sTj rj

sTj Asj
=

sTj r0

sTj Asj
, j = 0, . . . , k .

On the other hand, since {s0, . . . , sk} are A-conjugate, we have that

(ST
k ASk)−1 = diag(sT0 As0, . . . , s

T
k Ask)−1 (cf. (2))

= diag

(
1

sT0 As0
, . . . ,

1

sTk Ask

)
.

Especially, this means that the the minimizer h∗ of φ(x0 + Skh) over the
hyperplane Sk is given by

h∗ = (ST
k ASk)−1ST

k r0 = diag

(
1

sT0 As0
, . . . ,

1

sTk Ask

)s
T
0 r0
...

sTk r0

 =

 α0
...
αk

 = ak .

In consequence, xk+1 = x0 + Skak = x0 + Skh∗.



If the search directions are chosen to be A-conjugate, the residuals satisfy
a useful geometric property.

Corollary

If the non-zero search directions {sj}kj=0 ⊂ Rn are A-conjugate, then the
residual rk+1 = y − Axk+1 satisfies

rk+1 ⊥ span{s0, . . . , sk},

where the orthogonality is in the sense of the standard Euclidean dot
product 〈z ,w〉 = zTw.

Proof. Since xk+1 = x0 + Skh∗, it holds that

rk+1 = (y − Ax0)− ASkh∗ = r0 − ASkh∗.

In consequence,

[rTk+1s0, . . . , r
T
k+1sk ] = rTk+1Sk = rT0 Sk − hT∗ S

T
k ASk = 0,

because hT∗ = ((ST
k ASk)−1ST

k r0)T = rT0 Sk(ST
k ASk)−1.



Construction of A-conjugate search directions

There are many ways to construct a set of A-conjugate search directions.
We obtain the conjugate gradient algorithm with the following choice of
Krylov subspaces.

Definition

The kth Krylov subspace of A with the initial vector r0 = y − Ax0 is
defined as

Kk = Kk(A, r0) = span{r0,Ar0, . . . ,Ak−1r0}, k = 1, 2, . . . .

Note that A(Kk) ⊂ Kk+1. Furthermore,

Kk−1 ⊂ Kk (Krylov subspaces are nested).

dimKk ≤ k (dimension of the kth Krylov subspace is at most k).

dimKk ≤ dimKk−1 + 1 (dimension of the successive Krylov is at
most one higher than that of the former).

N.B. If r0 is an eigenvector of A, then dimKk = 1 for all k ≥ 1. However,
it turns out that this will not be an issue.



Construction of the conjugate gradient algorithm

We construct a sequence of A-conjugate search directions inductively.
Idea: given a set of A-conjugate search directions, we either construct a
new A-conjugate search direction or the previous iterate is already the
global minimizer x∗, i.e., the unique solution of Ax = y .

1 Choose an initial guess x0 ∈ Rn.
2 If r0 = y − Ax0 = 0, then x∗ = x0 and we are done. Otherwise, set

s0 = r0. Then the single search direction {s0} is automatically
A-conjugate and K1 = span{s0} = span{r0}.

3 Suppose that we have non-zero and A-conjugate search directions
{sj}k−1j=0 , k ≥ 1, such that

Km = span{s0, . . . , sm−1} = span{r0, . . . , rm−1}, m = 1, . . . , k , (3)

where rj = y − Axj , j = 0, . . . , k − 1, are residuals corresponding to
the iterates {xj}k−1j=0 of the sequential minimization algorithm.
If rk = 0, then x∗ = xk and we are done. Otherwise, we try to choose
another non-zero A-conjugate search direction sk ∈ Rn such that (3)
remains valid with k replaced by k + 1.



Suppose that rk 6= 0. Then

rk = y − Axk = y − A(xk−1 + αk−1sk−1) = rk−1 − αk−1Ask−1,

where rk−1, sk−1 ∈ Kk by assumption, and the new residual rk ∈ Kk+1.
Moreover, rk ⊥ {s0, . . . , sk−1} (recall the corollary about residuals from
earlier) and Kk = span{s0, . . . , sk−1}, it must hold that

Kk+1 = span{s0, . . . , sk−1, rk} = span{r0, . . . , rk−1, rk}.

We seek the new search direction sk via the ansatz

sk = rk + βk−1sk−1, βk−1 ∈ R.

Evidently, sk ∈ Kk+1 and, moreover,

Kk+1 = span{s0, . . . , sk−1, rk} = span{s0, . . . , sk−1, sk}.

We can solve the undetermined coefficient βk−1 by enforcing the
A-conjugacy condition.



We want to choose βk−1 ∈ R in sk = rk + βk−1sk−1 so that

0 = sTj Ask = sTj Ark + βk−1s
T
j Ask−1

= (Asj)
Trk + βk−1s

T
j Ask−1

(4)

for all j = 0, . . . , k − 1. Since {s0, . . . , sk−2} ⊂ Kk−1, we have

{As0, . . . ,Ask−2} ⊂ Kk = span{s0, . . . , sk−1},

and thus the vectors {As0, . . . ,Ask−2} are orthogonal to rk (again, recall
the corollary about residuals from earlier). Thus (4) is satisfied
automatically for j = 0, . . . , k − 2 and we only need to ensure that the
case corresponding to j = k − 1 is satisfied.

Solving the remaining equation for βk−1 results in

sTk−1Ark + βk−1s
T
k−1Ask−1 = 0 ⇔ βk−1 = −

sTk−1Ark

sTk−1Ask−1
.

Thus we obtain the update rule

sk = rk + βk−1sk−1, βk−1 = −
sTk−1Ark

sTk−1Ask−1
.



Putting everything together: preliminary conjugate
gradient algorithm

Let A ∈ Rn×n be a symmetric and positive definite matrix. The solution of
the system Ax = y is the minimizer of the quadratic functional φ(x)
defined earlier. We can proceed as follows:

1. Let x0 ∈ Rn be an initial guess.

2. Set k = 0, r0 = y − Ax0, and s0 = r0. Note that K1 = span{s0} = span{r0} is
trivially A-conjugate.

Repeat until the chosen stopping criterion is satisfied:

3. The minimizer of φ in hyperplane Kk+1 is given by the line search step

xk+1 = xk + αksk , αk =
sTk rk
sTk Ask

. (5)

(Recall that as long as {s0, . . . , sk} are A-conjugate, the sequential
minimization algorithm produces the minimizer in hyperplane Kk+1.)

4. Update residual rk+1 = y − Axk+1 = y − Axk − αkAsk = rk − αkAsk .
5. The next A-conjugate search direction is given by the update

sk+1 = rk+1 + βksk , βk = − sTk Ark+1

sTk Ask
. (6)

6. Set k ← k + 1.

end



The conjugate gradient algorithm is usually presented in slightly different
form. Assuming that the iteration has not yet converged at the iterate xk ,
we can deduce the following formulae for (5) and (6).

Simplifying (5): Since rk ⊥ sk−1, we have that

sTk rk
(6)
= (rk + βk−1sk−1)Trk = ‖rk‖2 ⇒ αk

(5)
=
‖rk‖2

sTk Ask
. (7)

Simplifying (6): since rk+1 ⊥ span{s0, . . . , sk} = Kk+1 3 rk (corollary on
residuals with A-conjugate directions) and rk+1 = rk − αkAsk (see step 4
on previous slide), then

‖rk+1‖2 = rTk+1(rk − αkAsk)
(7)
= − ‖rk‖

2

sTk Ask
rTk+1Ask

(6)
= βk‖rk‖2

and thus

βk =
‖rk+1‖2

‖rk‖2
.

We can plug these formulae for αk and βk into the preliminary conjugate
gradient algorithm, which leads to the “standard form” of the method.



Pseudocode for the conjugate gradient algorithm

Given: symmetric, positive definite system matrix A ∈ Rn×n,
data y ∈ Rn.

1. Choose initial guess x0 ∈ Rn.

2. Set k = 0, r0 = y − Ax0, s0 = r0;

Repeat until the chosen stopping rule is satisfied:

3. αk = ‖rk‖2/(sTk Ask);
4. xk+1 = xk + αksk ;
5. rk+1 = rk − αkAsk ;
6. βk = ‖rk+1‖2/‖rk‖2;
7. sk+1 = rk+1 + βksk ;
8. k ← k + 1;

end



Let us revisit the simple optimization example from earlier.
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Figure: Left: Minimization using steepest descent search directions sk = −∇φ(xk).
Right: In the linear case, the conjugate gradient method iteratively finds the
optima over the Krylov subspaces K1 and K2. The CG method converges to the
actual solution x∗ = (0, 0)T (marked with a blue cross) when k = n = 2.



Conjugate gradient method for inverse problems

According to the previous construction, if the conjugate gradient method
is applied to the equation

Ax = y ,

where A ∈ Rn×n is symmetric and positive definite, an exact solution (up
to rounding errors) is achieved in at most n iteration steps, i.e.,
xn = x∗ = A−1y . However, the algorithm typically converges satisfactorily
much quicker. A (pessimistic) convergence rate is proved in the first
exercise of week 4.

With ill-posed problems, one should be more cautious and terminate the
iterations well before convergence to avoid fitting the solution to noise. In
fact, since the conjugate gradient method often converges very fast, one
should be extremely cautious.



Let us consider a general ill-posed matrix equation

Ax = y ,

where A ∈ Rm×n and y ∈ Rm are given.

If m = n and there is some available prior information suggesting that
A is, at least in theory, positive (semi-)definite, one can apply the
conjugate gradient algorithm directly on the original equation.

More generally, one may still consider the normal equation

ATAx = ATy ,

which corresponds to solving the original equation in the sense of
least squares.



The system matrix ATA = (ATA)T ∈ Rn×n is symmetric and

uTATAu = ‖Au‖2 > 0 for all u ∈ Rn \Ker(A).

Thus the conditions of the conjugate gradient algorithm are almost
satisfied, and one may look for the solution of the inverse problem by using
the conjugate gradient algorithm with A replaced by ATA and y by ATy .†

As a stopping criterion, one may try, e.g., the Morozov principle for the
original equation: terminate the iteration when

‖y − Axk‖ ≤ ε

for some ε > 0, which measures the amount of noise in y in some sense.

†Small remark on implementation: matrix-matrix products are typically far more
expensive to compute than matrix-vector products. For example, instead of computing
expressions like residual = A’*y - A’*A*x0 when implementing the conjugate
gradient method in MATLAB, one should use parentheses to parse the computation like
residual = A’*y - A’*(A*x0).



Numerical example: backward heat equation revisited

Let us revisit the backward heat equation:
∂tu(x , t) = ∂2xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),

where f : (0, π)→ R is the initial heat distribution.

Inverse problem: Reconstruct the initial state f based on noisy
measurements of u(·,T ) at time T > 0.

Let xj = jh, j = 0, . . . , 100 with h = π/100, and denote U(t) = (Uj(t))99j=1

and F = (f (xj))99j=1. At time t = T > 0, the discretized heat distribution
U := U(T ) is given by

U = AF ,

where A = eTB ∈ R99×99 and B = h−2tridiag(1,−2, 1) ∈ R99×99.



As ground truth, we take

f (x) =

{
1 if x ∈ [1, 2],

0 if x ∈ (0, 1) ∪ (2, π).

We assume that the simulated data U = U(T ) ∈ R99 at time T = 0.1 is
contaminated with mean-zero Gaussian noise with standard deviation 0.01,
and that the discrepancy between the measured data and the underlying
“exact” data equals the square root of the expected value of the squared
norm of the noise vector, i.e.,

ε =
√

99 · 0.012 ≈ 0.0995.

We use the conjugate gradient method to solve the normal equation

ATAF = ATU,

and terminate the algorithm for the first CG iterate Fk such that

‖AFk − U‖ ≤ ε.
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Although we have simply scratched the surface by covering some of the
basic ideas surrounding the conjugate gradient scheme and demonstrating
how an “early stopping rule” can provide reasonable solutions for inverse
problems, the regularizing properties of the conjugate gradient method
have been analyzed more explicitly in the literature. A classic textbook
specifically about this subject is:

M. Hanke. Conjugate gradient type methods for ill-posed problems.
Pitman Research Notes in Mathematics Series, 327.


