Freie Universität Berlin
Prof. Dr. Ana Djurdjevac
Prof. Dr. Ralf Kornhuber

Numerics III

SS 2022
8. Exercise sheet, due June 22, 2022

Problem 1 (2 TP)
Let $\Omega \subset \mathbb{R}^{n}$ denote a bounded Lipschitz domain, $\mathcal{C}=\left\{v \in H^{1}(\Omega) \mid v=\right.$ const. $\}$, $f \in\left\{v \in L^{2}(\Omega) \mid \int_{\Omega} v d x=0\right\}$, and $u \in H=\mathcal{C}^{\perp}=\left\{v \in H^{1}(\Omega) \mid(v, w)_{1}=\right.$ $0 \forall w \in \mathcal{C}\}$ be the solution of the variational problem

$$
u \in H: \quad(\nabla u, \nabla v)=(f, v) \quad \forall v \in H
$$

Show that u is a classical solution of

$$
-\Delta u=f \text { in } \Omega, \quad \frac{\partial}{\partial n} u=0 \text { on } \partial \Omega
$$

provided that the regularity assumption $u \in \mathcal{C}^{\perp} \cap C^{2}(\bar{\Omega})$ holds.
Hint: Proceed in a similar way as in the proof of Theorem 1.4.

Problem 2 ($2+4$ TP)
Let $\Omega \subset \mathbb{R}^{n}$ denote a bounded Lipschitz domain.
a) Derive a weak formulation of the inhomogenous Neumann problem

$$
-\Delta u=f \text { in } \Omega, \quad \frac{\partial}{\partial n} u=g \text { on } \partial \Omega
$$

b) Derive sufficient conditions for existence, uniqueness and stability of a weak solution.

Problem 3 (4 TP)
Consider the inhomogeneous variational problem

$$
u \in H: \quad(\nabla u, \nabla v)=(f, v) \quad \forall v \in H_{0}^{1}(\Omega)
$$

with $H=\left\{v \in H^{1}(\Omega) \mid \operatorname{tr} v=g\right\}$ and given $g \in V(\partial \Omega)$ with

$$
V(\partial \Omega)=\left\{v \in L^{2}(\partial \Omega) \mid \exists w \in H^{1}(\Omega): v=\operatorname{tr} w\right\}
$$

equipped with the norm

$$
\|v\|_{V(\partial \Omega)}=\inf _{\substack{w \in H^{1}(\Omega) \\ \operatorname{tr} w=v}}\|w\|_{H^{1}(\Omega)}
$$

Show well-posedness in the sense that there is a unique solution $u \in H$ that depends continuously on the data $f \in L^{2}(\Omega)$ and $g \in V(\partial \Omega)$.

