
Freie Universität Berlin

FB Mathematik und Informatik

Numerische Mathematik/Scientific Computing

Notes on
Numerical Methods for ODEs and

Numerical Linear Algebra

(Numerics II)

Ralf Kornhuber

1. Edition: Wintersemester 07/08
– corrected version from October 2011 –

Compiled and typeset by Hanne Hardering

Contents

1 Stiff Differential Equations 1
1.1 Stability of Solutions of ODEs . 1
1.2 Stability of Linear Recursions . 10
1.3 Preserving Stability: Linear Systems . 11
1.4 Collocation and Gauß Methods . 15
1.5 Dissipative Systems and A-stability of Gauß Methods 20
1.6 Preserving Asymptotic Stability: Nonlinear Systems 24
1.7 Algorithmic Aspects of Implicit RK’s (Gauß Methods) 28

1.7.1 Fixed point iteration . 29
1.7.2 Newton iteration and simplifications 30

1.8 Linearly Implicit One-Step-Methods . 32
1.9 Extrapolation Methods . 35
1.10 Gradient Flows and Parabolic PDEs . 37

2 Differential Algebraic System 43
2.1 Motivation . 43
2.2 Linear DAEs: Existence and Uniqueness . 45
2.3 Nonlinear Semi-explicit DAEs . 51

3 Hamiltonian Systems 54
3.1 Energy and Symplecticity . 54
3.2 Symplectic Runge-Kutta-Methods . 58

4 Iterative Methods for Linear Systems 62
4.1 Motivation (Why Iterative Solutions?) . 62
4.2 Linear Iterative Schemes . 66
4.3 Preconditioning and Linear Iterations . 68
4.4 Linear Descent Methods . 73
4.5 Nonlinear Descent Methods . 77

4.5.1 Gradient Methods (Steepest Descent) 77
4.5.2 Conjugate Gradient Methods (CG Methods) 80
4.5.3 Generalized minimal residual method (GMRes) 87

I

1 Stiff Differential Equations

We already know ordinary differential equations (ODEs) from Numerics I where we dealt
with existence, uniqueness, and condition of solutions as well as the numerical treatment of
ODEs by explicit and implicit Runge-Kutta methods. We saw that implicit methods are not
always applicable, e.g. f(x) = x2. We will now consider the following examples to motivate
the use of implicit methods.

Example (Population of bacteria) The growth of a population of bacteria is described
by the ODE [9]

x′ = qx− kx2, t > 0, x(0) = 1

The exact solution takes the form

x(t) =
qeqt

q + (eqt − 1)k
→

q

k
for t → ∞

Using different matlab routines yields results of different quality

ode45: based on an explicit Runge-Kutta formula: very small timesteps → inefficient
ode23t: based on the implicit trapezoidal rule: adapted timesteps → efficient

Example (Chemical reaction system) We consider a chemical reaction system described
by

A
c1=0.04
→ B slow

2B
c2=3·107

→ B + C very fast

B + C
c3=104
→ A+ C fast

Thus, we get the ODE

A : x′1 = −c1x1 +c3x2x3
B : x′2 = c1x1 −c2x

2
2 −c3x2x3

C : x′3 = c2x
2
2

A differential equation is called stiff if it is not efficiently solvable by explicit discretization
methods. This is the case if the solution being sought is varying slowly but there are
nearby solutions that vary rapidly, so the numerical method must take small steps to obtain
satisfactory results.

1.1 Stability of Solutions of ODEs

We consider the initial value problem (IVP)

x′ = f(x), 0 < t < ∞, x(0) = x0, f : Rd → R
d continuously differentiable

(1.1)

1

2 1 Stiff Differential Equations

and the perturbed IVP:

y′ = f(y), y(0) = x0 + δx0 (1.2)

Definition 1.1.1 (stability of solutions) Let x(t) be the solution of (1.1).

1. x(t) is called stable if

∀ǫ > 0 ∃δ > 0 : |δx0| < δ ⇒ (i) solution y(t) of (1.2) exists
(ii) supt∈[0,∞) ‖x(t) − y(t)‖ < ǫ

y(t)

2ǫ 2δ

t

x(t)

2. x(t) is called asymptotically stable if

• x(t) is stable

• ∃δ0 : |δx0| < δ0 ⇒ limt→∞ ‖x(t)− y(t)‖ = 0

Example The solution of the bacteria problem is asymptotically stable:

x(t) =
x0qe

qt

q + (eqt − 1)kx0
→

{
0 q < 0
q
k

q > 0

Observation: The bacteria problem has the fixed point x∗ = q
k
for q > 0 and ‖x(t)−x∗‖ → 0.

Definition 1.1.2 x∗ ∈ R
d is called fixed point of (1.1) if x(t) ≡ x∗ solves (1.1) for x0 = x∗.

x∗ is (asymptotically) stable if and only if x(t) ≡ x∗ is (asymptotically) stable.

From now on we will only consider the stability of fixed points.
Without loss of generality we can assume that x∗ = 0: For x∗ 6= 0 we consider the ODE

y′ = g(y), y := x− x∗, g(y) := f(y + x∗)

with fixed point y∗ = 0.

1.1 Stability of Solutions of ODEs 3

Linear case

We start with the linear IVP

x′ = Ax, x(0) = x0, A ∈ R
d×d, x0 ∈ R

d (1.3)

with fixed point x∗ = 0.

Theorem 1.1.3 The flow operator Φt of (1.3) takes the form

Φt = etA

denoting

exp(tA) = etA :=

∞∑

k=0

1

k!
(tA)k (1.4)

This series converges uniformly on finite time intervals [0, T].

Proof Let t be fixed. The sequence (sn) defined by

sn =

n∑

k=0

1

k!
(tA)k

is a Cauchy sequence in R
d×d. Since R

d×d is complete, we get

sn → s = etA.

The majorant criterion yields uniform convergence for all t ∈ [0, T].
It remains to show that etAx0 is a solution of (1.3).
Termwise differentiation yields:

d

dt
etAx0 =

∞∑

k=0

1

k!

d

dt
(tA)kx0

=

∞∑

k=1

1

(k − 1)!
A(tA)k−1x0

= AetAx0

The initial value satisfies

etAx0|t=0 = x0 + (tA)|t=0 +
1

2
(tA)2|t=0 + . . . = x0.

�

Lemma 1.1.4 The matrix exponential defined in (1.4) has the properties

(i) et(TAT−1) = TetAT−1, ∀T ∈ R
d×d regular

(ii) et(A+B) = etAetB , ∀B ∈ R
d×d with AB = BA

4 1 Stiff Differential Equations

(iii) A = blockdiag(A1, . . . , Ak) ⇒ etA = blockdiag(etA1 , . . . , etAk)

(iv) eαI = eαI, α ∈ R, I =






1 0
. . .

0 1




 ∈ R

d×d

Proof We show (i):

(TAT−1)k = TAkT−1

et(TAT−1) =
∞∑

k=0

1

k!
(t(TAT−1))k = T

(∞∑

k=0

1

k!
(tA)k

)

T−1 = TetAT−1

(ii)-(iv) Exercise. �

Let

p(λ) = det(A− λI)

denote the characteristic polynomial of A.
Then, by definition,

p(λ) = 0 ⇔ λ eigenvalue of A

and

e ∈ ker(A− λI) ⇔ e eigenvector of A ⇔ Ae = λe

Let further s(λ0) denote the algebraic multiplicity of λ0, i.e.,

p(λ) = (λ− λ0)
s(λ0)q(λ), q(λ0) 6= 0

and

r(λ0) = dimker(A− λ0I) > 0

denote the geometric multiplicity. Recall r(λ0) ≤ s(λ0).

Lemma 1.1.5 (Jordan normal form) Let σ(A) = {λ1, . . . , λm} be the spectrum of A, λk

pairwise different.
Then there is a regular matrix T ∈ C

d×d:

TAT−1 = J = blockdiag(J1, . . . , Jm∗), d ≥ m∗ ≥ m.

The Jordan blocks Ji, i = 1, . . . ,m∗, take the form

Ji = Ji(λki) =









λki 1 0

λki

. . .

. . . 1
0 λki









∈ R
ni×ni

with corresponding λki ∈ σ(A). Conversely, for each λk ∈ σ(A) there are r(λk) Jordan blocks

Jij (λk) ∈ C
nij

×nij , j = 1, . . . , r(λk), with
∑r(λk)

j=1 nij = s(λk).

1.1 Stability of Solutions of ODEs 5

Remark

Ji = Ji(λki) = λkiI +N

with

N =









0 1 0

0
. . .
. . . 1

0 0









∈ R
ni×ni

nilpotent, i.e., Nni−1 6= 0, Nni = 0.
If r(λk) = s(λk), then nij = 1, j = 1, . . . , r(λk). Hence, r(λk) = s(λk) ∀λk ∈ σ(A) implies
that J is diagonal.
Notation:

λ = ℜλ+ i · ℑλ ∈ C, ℜλ,ℑλ ∈ R, |eλ| = |eℜλ| · |ei·ℑλ| = |eℜλ|

Proposition 1.1.6 The stability of fixed points can be characterized as follows

(i) x∗ = 0 is stable if

• ℜλ ≤ 0 for all λ ∈ σ(A)

• ℜλ = 0 ⇒ s(λ) = r(λ)

(ii) x∗ = 0 is asymptotically stable if ℜλ < 0 holds for all λ ∈ σ(A)

(iii) If ℜλ < α ∈ R holds for all λ ∈ σ(A), then

∃C > 0 : ‖etA‖ ≤ Cetα ∀t ≥ 0

Proof We show (iii): Lemma 1.1.5 and Lemma 1.1.4 yield

TetAT−1 = etJ

= blockdiag(etJ1 , . . . , etJm∗)

⇒ ‖etA‖ ≤ ‖T‖ · ‖T−1‖ max
i=1,...,m∗

‖etJi‖

and for a Jordan block Ji = λkiI +N ∈ R
ni×ni holds

etJi = eλkitIetN

= eλkit

(

I + tN +
1

2
(tN)2 + . . .+

1

(ni − 1)!
(tN)ni−1

)

.

Let ℜλki < α ∈ R

‖etJi‖ ≤ |eλkit|

(

1 + t‖N‖+ . . .+
1

(ni − 1)!
tni−1‖N‖ni−1

)

= eℜλkit

(

1 + t‖N‖+ . . .+
1

(ni − 1)!
tni−1‖N‖ni−1

)

≤ Ceαt

⇒ (iii).

6 1 Stiff Differential Equations

We show (ii): Let ℜλ < −α < 0

‖etAx0‖ ≤ Ce−αt‖x0‖ → 0 for t → ∞.

We show (i), second case: Assume that ℜλ = 0. By assumption, we have s(λ) = r(λ)
and therefore Jk(λ) = (λ) ∈ R

1×1.

⇒ ‖etJk‖ ≤ etℜλ · 1 = 1

⇒ ‖etAx0‖ ≤ ‖T‖ · ‖T−1‖ · 1 · ‖x0‖ ⇒ (i).

�

Example We consider the scalar case λ ∈ C

x′ = λx, x(0) = x0, x(t) = x0e
λt

ℜλ < 0 ⇒ |x(t)| ≤ |x0|e
tReλ → 0 for t → ∞ ⇒ x∗ = 0 asymptotically stable

ℜλ = 0 ⇒ x∗ = 0 stable

ℜλ > 0 ⇒ x∗ = 0 unstable

Example (Monomolecular reaction) We consider the monomolecular reaction

A
c
→ B

which can be described by the ODE

A : x′1 = −cx1
B : x′2 = cx1

Rewritten in matrix formulation the ODE takes the form

x′ =

(
−c 0
c 0

)

x

with the eigenvalues

p(λ) = λ(λ+ c) ⇒ λ1 = −c, λ2 = 0

Therefore, x∗ = 0 is stable but not asymptotically stable:

x(0) = δ0 =

(
0

ǫ

)

⇒ x1 = 0, x2 = ǫ

Remark Properties of A characterize the stability of all fixed points of x′ = Ax. We say
x′ = Ax is (asymptotically) stable if and only if x∗ = 0 is (asymptotically) stable.

Notation: ν(A) = maxλ∈σ(A) ℜλ is called spectral abscissa.

1.1 Stability of Solutions of ODEs 7

Example We consider the following initial value problem

x′ =

(
0 1

−1 0

)

x, x(0) =

(
0

1

)

= x0, Φtx0 =

(
sin t

cos t

)

with the eigenvalues

p(λ) = λ2 + 1 ⇒ λ1 = i, λ2 = −i

By Proposition (1.1.6) the fixed point x∗ = 0 is stable but not asymptotically stable: Let
ε > 0 be arbitrary. Then

Φt

(
0

ε

)

= ε

(
sin t

cos t

)

6→ 0 for t → ∞

Example We consider x′ = Ax with

A =









−2 1 0

1 −2
. . .

. . .
. . . 1

0 1 −2









∈ R
d×d

A has the eigenvalues

λi = −4 sin2
(

i

2(d + 1)
π

)

, i = 1, . . . , d

Thus,

ν(A) = −4 sin2
(

1

2(d + 1)
π

)

< 0.

Therefore, x′ = Ax is asymptotically stable.

Attention Our results do not carry over to x′ = A(t)x (exercise).

Nonlinear case

We consider

x′ = f(x)

Our (natural) hope is that (asymptotic) stability is inherited from the linearization of f(x)
at a fixed point x∗

x′ = f(x∗)
︸ ︷︷ ︸

=0

+Ax, A = Df(x)|x=x∗

Example In general, stability is not inherited from the linearization. Consider the ODE

x′1 = x31 − x2

x′2 = x1

8 1 Stiff Differential Equations

x∗ = 0 is a fixed point.

A = Df(x)|x=x∗ =

(
3x21 −1
1 0

)

|x=0 =

(
0 −1
1 0

)

λ1 = −i, λ2 = i

Therefore, x′ = Ax is stable.
Let x0 = δ ∈ R

2, x0 6= 0. Then (exercise)

V (Φtx0) → ∞ for t → t+ < ∞, V (x) = x21 + x22

Conclusion If x∗ is a stable fixed point of the linearized system, this does not imply that
x∗ is a stable fixed point of the original nonlinear system. Terms of higher order might
dominate.

Theorem 1.1.7 Let x∗ ∈ R
d be a fixed point of

x′ = f(x),

i.e., f(x∗) = 0, and f is continuously differentiable. If ν(Df(x∗)) < 0, then x∗ is asymptot-
ically stable.

Proof We can assume x∗ = 0 without loss of generality.
By definition of the derivative A = Df(x∗), we get ‖f(x) − (f(x∗)

︸ ︷︷ ︸

=0

+Ax)‖ = o(‖x‖).

Hence,

f(x) = Ax+ g(x), g(x) = o(‖x‖).

1. Let x0 ∈ R
d and let Φtx0 exist for t ∈ [0, T), T ∈ R ∪ {∞}.

Then

Φtx0 := etAx0 +

∫ t

0
exp((t− s)A)g(Φsx0)ds

is a solution (variation of constants, see, e.g., CoMa II).

d

dt
Φtx0 = AetAx0 + exp((t− s)A)g(Φsx0)|s=t +

∫ t

0
A exp((t− s)A)g(Φsx0)ds

= Aφtx0 + g(Φtx0)

Φtx0|t=0 = x0

2. To show:

‖Φtx0‖ ≤ Ce−βt, β > 0

We will use the Gronwall’s lemma:

Ψ(t) ≤ a+ b

∫ t

0
Ψ(s)ds, 0 ≤ t ≤ t∗

⇒ Ψ(t) ≤ aebt, 0 ≤ t ≤ t∗

1.1 Stability of Solutions of ODEs 9

Choose β ∈ R such that ν(A) < −β < 0.
Theorem 1.1.6 (iii) implies

∃C > 0 : ‖ exp(tA)‖ ≤ Ce−tβ .

Hence,

‖Φtx0‖ ≤ Ce−tβ‖x0‖+ C

∫ t

0
e−(t−s)‖g(Φsx0)‖ds.

Since g(x) = o(‖x‖)

∃δ0 > 0 : ‖g(x)‖ ≤
β

2C
‖x‖ ∀‖x‖ < δ0.

Choose ‖x0‖ < δ0 and t∗ ≤ T such that ‖Φtx0‖ < δ0 ∀t ∈ [0, t∗]. Then

‖Φtx0‖ ≤ Ce−tβ‖x0‖+ C
β

2C

∫ t

0
e−(t−s)‖Φsx0‖ds.

Use Gronwall’s lemma for Ψ(t) := eβt‖Φtx0‖

Ψ(t) ≤ C‖x0‖+
β

2

∫ t

0
Ψ(s)ds, 0 ≤ t ≤ t∗

⇒ Ψ(t) ≤ C‖x0‖e
β

2
t

⇒ ‖Φtx0‖ ≤ C‖x0‖e
−β

2
t

Choose ‖x0‖ < min
{

δ0,
δ0
C

}

. Then

‖Φtx0‖ < δ0e
−β

2
t ≤ δ0 ∀t ∈ [0, T].

This means that there is no blow-up for t → T . Hence, T = ∞ and limt→∞Φtx0 =
0.

�

Add-on The Theorem of Grobman/Hartman [4, p. 115] yields an even stronger result:
If σ0 = {λ ∈ σ|ℜλ = 0} = ∅, then there exists a continuous invertible coordinate transfor-
mation h such that

h(Φtx) = exp(tA)h(x) x ∈ U(x∗)

Example We consider the growth of bacteria again

f(x) = qx− kx2

q > 0: x∗ = q
k

f ′(x) = q − 2kx

f ′(x)|x=x∗ = q − 2k
q

k
= −q < 0

Therefore, x∗ is an asymptotically stable fixed point.

q = 0: x∗ = 0
f ′(x)|x=0 = 0

Therefore, 1.1.7 is not applicable.
x∗ = 0 is not stable (exercise)

10 1 Stiff Differential Equations

Generalizations

• quasi-stationary states: “almost” fixed points (van der Pool, reaction)

• metastable states (conformations): “almost” fixed subsets

1.2 Stability of Linear Recursions

Motivation Let x′ = Ax be (asymptotically) stable.
The explicit Euler discretization takes the form

xk+1 = xk + τAxk = Ψτxk

= (Ψτ)k+1x0, Ψτ = I + τA ∈ R
d×d

Any (explicit) Runge-Kutta method takes the form

xk+1 = Bxk, Ψτ = B ∈ R
d×d

Question Is stability inherited from the continuous problem by discretization?

Definition 1.2.1 Consider the linear recursion

xk+1 = Bxk = Bk+1x0, k = 0, 1, . . . (1.5)

(1.5) is called stable if supk∈N ‖Bk‖ < C.
(1.5) is called asymptotically stable if limk→∞ ‖Bk‖ = 0.

Remark (Asymptotic) stability is invariant under similarity transformations.

Proof

(TBT−1)k = TBkT−1

‖(TBT−1)k‖ = ‖TBkT−1‖ ≤ ‖T‖‖T−1‖‖Bk‖

�

Theorem 1.2.2 Let ρ(B) = maxλ∈σ(B) |λ| be the spectral radius of B.

1. If ρ(B) ≤ 1 and every eigenvalue λ ∈ σ(B) with |λ| = 1 fulfills r(λ) = s(λ), then
xk+1 = Bxk is stable.

2. If ρ(B) < 1, then xk+1 = Bxk is asymptotically stable.

Proof [4, Theorem 3.33]

1.3 Preserving Stability: Linear Systems 11

Example The explicit Euler method

xk+1 = xk + τAxk = (I + τA)xk, k = 0, 1, . . .

⇒ Ψτ = B = (I + τA)

λ ∈ σ(A) ⇒ 1 + τλ ∈ σ(B)

is asymptotically stable if

|1 + τλ|2 = (1 + τℜλ)2 + (τℑλ)2 < 1.

ℜλ < 0 ∀λ ∈ σ(A) ⇒ x′ = Ax asymptotically stable 6⇒ |1 + τλ|2 < 1.

Example

A =

(
0 1
−1 0

)

x′ = Ax is stable
σ(A) = {i,−i}

ρ(I + τA) = {|1 + τi|, |1 − τi|} = (1 + τ2)
1
2 > 1

Therefore, xk+1 = (I + τA)xk is unstable for all τ > 0. Thus, stability is not inherited by
the explicit Euler method.

1.3 Preserving Stability: Linear Systems

We consider the linear system

x′ = Ax, A ∈ R
d×d (1.6)

and a Runge-Kutta method
xk+1 = Ψτxk (1.7)

We are interested in the question of inheritance of stability, i.e.,

(1.6) (asymp.) stable ⇒ (1.7) (asymp.) stable?

Proposition 1.1.6 and Theorem 1.2.2 provide the result that stability is governed by the
eigenvalues of A and Ψτ . This motivates to consider Dahlquist’s test equation

x′ = λx (1.8)

(1.8) stable ⇔ λ ∈ C− = {z ∈ C|ℜz ≤ 0}

(1.8) asymp. stable ⇔ λ ∈ C̊− = {z ∈ C|ℜz < 0}

Application of a Runge-Kutta method Ψτ with uniform step size τ > 0 to (1.8) leads to

xk+1 = R(λ, τ)xk, Ψτ = R(λ, τ) ∈ R

12 1 Stiff Differential Equations

Theorem 1.3.1 We consider the Runge-Kutta method Ψτ of stage s given by the Butcher

scheme
A

bT
, i.e.,

Ψτx = x+ τ

s∑

i=1

biki

ki = f



x+ τ

s∑

j=1

aijkj





There exists τ∗ > 0 such that application of Ψτ to (1.8) yields

xk+1 = R(λτ)xk ∀τ < τ∗

where

R(z) =
P (z)

Q(z)

with uniquely determined mutually prime polynomials P and Q with degP,degQ ≤ s nor-
malized by P (0) = Q(0) = 1.

Proof Inserting f(x) = λx we get the linear system

Ψτx = x+ τ
s∑

i=1

biki

ki = λ



x+ τ

s∑

j=1

aijkj



 , i = 1, . . . , s

1. λ = 0 ⇒ ki = 0 ⇒ Ψτ = 1

2. λ 6= 0
Let y = (yi)

s
i=1 with yi :=

1
λ
ki. Then

Ψτ = 1 + τλ

s∑

i=1

biyi = 1 + z

s∑

i=1

biyi

yi = 1 + τλ
s∑

j=1

aijyj = 1 + z
s∑

j=1

aijyj, i = 1, . . . , s

with z := τλ.
Consider the linear system in matrix form

My := (I − zA)y =






1
...
1






det(I − zA) = det(I − τλA) =: g(τ)

1.3 Preserving Stability: Linear Systems 13

Then g ∈ C(R) and g(0) = 1 and therefore,

∃τ∗ : det(I − τλA) 6= 0 ∀τ < τ∗

Cramer’s rule yields

yi = detM (i)

detM , with M = (M1, . . . ,Ms) = (I − zA)

M (i) = (M1, . . . ,Mi−1,






1
...
1




 ,Mi+1, . . . ,Ms)

=: Pi(z)

Q̃(z)

where degPi ≤ s− 1, deg Q̃ ≤ s. Hence,

Ψτ = 1 + z

s∑

i=1

biyi =
Q̃(z) + z

∑s
i=1 biPi(z)

Q̃(z)
=:

P (z)

Q(z)
.

If Ψτ is explicit, then det(I − zA) = 1

�

Definition 1.3.2 The rational function R(z), z ∈ C, associated with the Runge-Kutta
method Ψτ according to Theorem 1.3.1 is called stability function of Ψτ .

Example

1) explicit Euler: Ψτx = x+ τf(x)

application to (1.8): Ψτ = R(τλ) = 1 + τλ

⇒ R(z) = 1 + z

2) implicit Euler: Ψτx = x+ τf(Ψτx)

application to (1.8): R(τλ) = 1 + τλR(τλ)

⇒ R(z) =
1

1− z

3) trapezoidal rule: Ψτx = x+
1

2
τ
(
f(x) + f(Ψτx)

)

application to (1.8): R(τλ) = 1 +
1

2
τλ(1 +R(τλ))

⇒ R(z) =
1 + z

2

1− z
2

4) Runge-Kutta-4:

⇒ R(z) = 1 + z +
1

2
z2 +

1

3!
z3 +

1

4!
z4

Proposition 1.3.3 If Ψτ is consistent with order p, then

R(z) = ez +O(zp+1) for z → 0

14 1 Stiff Differential Equations

Proof Exercise

Theorem 1.3.4 The condition

C− ⊂ S = {z ∈ C||R(z)| ≤ 1} (1.9)

implies
stability of x′ = λx ⇒ stability of xk+1 = Ψτxk, ∀λ ∈ C.

Proof Obvious

Definition 1.3.5 S is called stability domain of Ψτ .
If the stability domain satisfies (1.9), then Ψτ is called A-stable.

Example 1. The stability function of the explicit Euler method is R(z) = 1 + z. Thus,
the stability domain is given by

S = {z ∈ |1 + z| ≤ 1}.

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

ℜz

−i

-1 1

ℑz

i

Hence, the explicit Euler method is not A-stable.

2. The stability function of the implicit Euler method is R(z) = 1
1−z

. Thus, the stability
domain is given by

S =

{

z ∈

∣
∣
∣
∣

1

1− z

∣
∣
∣
∣
≤ 1

}

.

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

i

ℜz

−i

-1 1

ℑz

Hence, the implicit Euler method is A-stable.

1.4 Collocation and Gauß Methods 15

Remark 1. (1.9) even implies

(asymp.) stability of x′ = λx ⇒ (asymp.) stability of xk+1 = Ψτxk

2. This assertion directly extends to linear systems. [4, Theorem 6.13]

Proposition 1.3.6 If Ψτ is explicit, then it is not A-stable.

Proof Let C− ⊂ S. Then S is unbounded. Let (zk) ⊂ S with |zk| → ∞. Because
Ψτ is explicit, R(z) = P (z) is a polynomial. Therefore, |R(z)| ≤ 1 cannot be true
contradicting (zk) ⊂ S. �

Definition 1.3.7 Ψτ is called L-stable if Ψτ is A-stable and

R(∞) := lim
z→∞

R(z) = 0

Example 1. For the implicit Euler method holds

R(z) =
1

1− z
→ 0 for z → ∞

Thus the implicit Euler method is L-stable.

2. For the implicit trapezoidal rule holds

R(z) =
1 + z

2

1− z
2

Thus the implicit trapezoidal rule is A-stable but not L-stable.

Remark For a general criterion for L-stability of RK-methods see [4, Lemma 6.32].

1.4 Collocation and Gauß Methods

We consider
x′ = f(t, x), f : R× R

d → R
d

Basic idea of collocation Construct a vector-valued function u : R → R
d of d polynomials

of degree s such that
u(t) = x

and the collocation conditions

u′(t+ ciτ) = f(t+ ciτ, u(t+ ciτ)), i = 1, . . . , s, 0 ≤ c1 ≤ . . . ≤ cs ≤ 1

hold. Set
Ψτx := u(t+ τ)

Remark u fulfills the ODE exactly in the collocation points t+ ciτ , i = 1, . . . , s.

16 1 Stiff Differential Equations

Construction of u Consider the Lagrange basis

Li(θ) =
s∏

j=1
j 6=i

θ − cj
ci − cj

.

Let
ki = u′(t+ ciτ), i = 1, . . . , s.

Lagrange interpolation formula [9]:

u′(t+ θτ) =
s∑

j=1

kjLj(θ)

Set

g(θ) := u(t+ θτ)

g′(θ) = τu′(t+ θτ)

The fundamental theorem yields

g(ci) = g(0) +

∫ ci

0
g′(θ)dθ

u(t+ ciτ) = u(t) + τ

∫ ci

0
u′(t+ θτ)dθ

= x+ τ
s∑

j=1

∫ ci

0
Lj(θ)dθ kj

= x+ τ

s∑

j=1

aijkj

where aij =
∫ ci
0 Lj(θ)dθ, A = (aij)

s
i,j=1.

Substitution into the collocation condition provides

ki = f(t+ ciτ, x+ τ

s∑

j=1

aijkj), i = 1, . . . , s. (1.10)

Substitution into the ansatz yields

Ψτx = u(t+ τ)

= x+ τ

∫ 1

0
u′(t+ θτ)dθ

= x+ τ

s∑

j=1

∫ 1

0
Lj(θ)dθ kj

= x+ τ
s∑

j=1

bjkj

1.4 Collocation and Gauß Methods 17

where bj =
∫ 1
0 Lj(θ)dθ, b = (bj)

s
j=1.

Thus, we obtain a Runge-Kutta method
A

bT
of stage s.

Remark The method is characterized by c1, . . . , cs.
We did not check whether Ψτ is feasible, i.e., whether ki = ki(τ) fulfilling (1.10) exist or not.

Proposition 1.4.1 Let f : R × R
d → R

d be sufficiently smooth. Then for all x ∈ R
d

and t ∈ R exists τ∗ > 0 such that the nonlinear system (1.10) is uniquely solvable in a
neighborhood of ki(0) = f(t, x).

Proof For convenience we assume d = 1. The system (1.10) can be written as

F (k, τ) = 0, F =






F1
...
Fs




 , k =






k1
...
ks






Fi = ki − f(t+ ciτ, x+ τ

s∑

j=1

aijkj).

Resolution with respect to k:

F (k(τ), τ) = 0, τ < τ∗

F (k(0), 0) = 0 ⇒ k(0) =






f(t, x)
...

f(t, x)






Differentiation with respect to k yields

DkF = I − τ



f ′(t+ ciτ, x+ τ
s∑

j=1

aijkj)aij





ij

DkF (k(0), 0) = I, det I > 0.

The implicit function theorem provides the assertion:
There exist τ∗ > 0 and δ > 0 such that there exists a unique k = k(τ) fulfilling
F (k(τ), τ) = 0 for 0 < τ < τ∗ and ‖k(τ)− k(0)‖ < δ. �

Remark Proposition 1.4.1 can be applied to arbitrary implicit Runge-Kutta methods.

Example Consider the ODE
x′ = x2.

The implicit Euler method takes the form

xk+1 = xk + τx2k+1.

For simplicity we assume xk = 0.

xk+1 − τx2k+1 = 0

⇒ xk+1,1 = 0, xk+1,2 =
1

τ

The correct local value is xk+1 = 0.

18 1 Stiff Differential Equations

Special case x′ = f(t)

ki = f(x+ ciτ), aij does not enter!

Ψτx = x+ τ

s∑

j=1

bjkj , bj =

∫ 1

0
L(θ)dθ

Equidistant nodes ci =
i−1
s
, i = 1, . . . , s lead to well-known Newton-Côtes formulas. [9]

Example s = 1: c1 = 0

L1(θ) ≡ 1

a11 =

∫ c1

0
1 dθ = 0

b1 =

∫ 1

0
1 dθ = 1

0

1
explicit Euler

s = 2: c1 = 0, c2 = 1

L1(θ) =
θ − c2
c1 − c2

= 1− θ, L2(θ) =
θ − c1
c2 − c1

= θ

a11 =

∫ c1

0
1− θdθ = 0 a12 =

∫ c1
0 θdθ = 0

a21 =

∫ c2

0
1− θdθ =

1

2
a22 =

∫ c2
0 θdθ = 1

2

b1 = b2 =
1

2

0 0
1
2

1
2

1
2

1
2

implicit trapezoidal rule

Collocation methods have s free parameters ci instead of s + s2 free parameters bi and aij
in general.
Hope: some nice conditions on b, A are fulfilled automatically.

Proposition 1.4.2 Collocation methods are consistent.

Proof A criterion for consistency is [4, Theorem 4.18]

s∑

i=1

bi = 1.

1.4 Collocation and Gauß Methods 19

It holds
s∑

i=1

bi =

s∑

i=1

∫ 1

0
Li(θ)dθ

=

∫ 1

0

s∑

i=1

Li(θ)dθ

=

∫ 1

0
1dθ

= 1.

�

Now we investigate the order of consistency of collocation methods.

Theorem 1.4.3 A collocation method is consistent with order p if and only if the corre-
sponding quadrature rule

∫ t+τ

t

φ(θ)dθ = τ

s∑

j=1

bjφ(t+ cjτ)

is consistent with order p.

Proof We only sketch a proof from [4, Theorem 6.40].

exact ODE: x′(t) = f(x)

perturbed ODE: u′(t) = f(u) + u′ − f(u)
︸ ︷︷ ︸

δf(u)

effect of perturbation: ∃M : Rd → R
d

Φtx−Ψτx = x(t+ τ)− u(t+ τ) =

∫ t+τ

t

M(θ)δf(θ)dθ

For the quadrature rule holds

∫ t+τ

t

M(θ)δf(θ)dθ − τ
s∑

j=1

bjM(t+ cjτ)δf(t+ cjτ) = O(τp+1)

exploiting
δf(t+ cjτ) = u′(t+ cjτ)− f(u(t+ cjτ)) = 0.

�

Consequence To obtain maximal order, select c1, . . . , cs such that the corresponding quadra-
ture rule has optimal order: Select Gauß points [9].

Reminder Gauß points are the zero points of the polynomial p ∈ Ps with
∫ 1

0
p(x)q(x)dx = 0 ∀q ∈ Ps−1.

The corresponding quadrature rule has order p = 2s.

20 1 Stiff Differential Equations

Remark We know how to construct a Runge-Kutta method with optimal order p = 2s.

Example s = 1: c1 =
1
2

L1(θ) ≡ 1

a11 =

∫ 1
2

0
1dθ =

1

2

b1 =

∫ 1

0
1dθ = 1

1
2

1

Ψτx = x+ τf

(
1

2
(x+Ψτx)

)

midpoint rule; order p = 2

s = 2: c1 =
1
2 −

√
3
6 , c2 =

1
2 +

√
3
6

1
4

1
4 −

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

Remark Gauß methods are implicit.

Proof The order of explicit Runge-Kutta methods of stage s is bounded by s [9]. �

1.5 Dissipative Systems and A-stability of Gauß Methods

We consider

x′ = f(x).

Definition 1.5.1 A mapping f : Rd → R
d is called dissipative with respect to the scalar

product 〈·, ·〉 if it satisfies

〈f(x)− f(y), x− y〉 ≤ 0 ∀x, y,∈ R
d.

Example 1. Let d = 1 then f is dissipative if and only if f is monotonically decreasing.
Hence, dissipativity is a generalization of “monotonically decreasing” to vector fields.

2. Let f(x) = Ax, A ∈ R
d×d. Then f is dissipative if and only if A is negative semi-

definite, i.e.,

〈Ax, x〉 ≤ 0 ∀x ∈ R
d.

1.5 Dissipative Systems and A-stability of Gauß Methods 21

As an example consider

A =









−2 1 0

1 −2
. . .

. . .
. . . 1

0 1 −2









.

A is diagonalizable, σ(A) ⊂ R, λ < 0 ∀λ ∈ σ(A).

Lemma 1.5.2 The phase flow Φt of x′ = f(x) is nonexpansive in the sense that

∃t∗ > 0 : |Φtx− Φty| ≤ |x− y| ∀t ≤ t∗ ∀x, y ∈ R
d

if and only if f is dissipative.

Proof Let
g(t) := |Φtx− Φty|2 = 〈Φtx− Φty,Φtx− Φty〉.

Then

g′(t) = 〈
d

dt
(Φtx−Φty),Φtx− Φty〉+ 〈Φtx− Φty,

d

dt
(Φtx− Φty)〉

= 2〈f(Φtx)− f(Φty),Φtx− Φty〉.

1. Let f be dissipative. Then

|Φtx− Φty|2 = g(t) = g(0) +

∫ t

0
g′(s)ds

= g(0) +

∫ t

0
2 〈f(Φsx)− f(Φsy),Φsx− Φsy〉
︸ ︷︷ ︸

≤0

ds

≤ g(0) = |x− y|2.

2. Let Φt be nonexpansive. Then we have for sufficiently small τ∗

g(t) ≤ g(0) ∀t ≤ t∗

⇒ 0 ≥ g′(0) = 2〈f(x)− f(y), x− y〉.

�

The concept of inheritance of nonexpansivity leads us to the following definition.

Definition 1.5.3 A Runge-Kutta method is called B-stable if

|Ψτx−Ψτy| ≤ |x− y| ∀x, y ∈ R
d, τ > 0

holds for dissipative f .

Proposition 1.5.4 B-stable Runge-Kutta methods are A-stable.

22 1 Stiff Differential Equations

Proof Consider

x′ = λx, x(0) = 1, ℜλ ≤ 0

Reformulation in real functions yields

x = u+ iv, λ = α+ iβ, α ≤ 0

x′ = u′ + iv′ = λx = (α+ iβ)(u + iv) = αu− βv + i(βu+ αv)

which can be rewritten in matrix form

(
u

v

)′
=

(
α −β
β α

)

︸ ︷︷ ︸

A

(
u

v

)

. (1.11)

Then

〈A

(
u

v

)

,

(
u

v

)

〉 = (αu− βv, βu + αv)

(
u

v

)

= αu2 − βuv + βuv + αv2

= α(u2 + v2) ≤ 0.

Therefore, (1.11) is dissipative.
Exploiting B-stability we get

|R(τλ)||x − y| = |Ψτx−Ψτy| ≤ |x− y|

and thus |R(τλ)| ≤ 1.
Insert τ = 1:

|R(λ)| ≤ 1 ⇔ λ ∈ S

Hence, λ ∈ C− arbitrary implies C− ⊂ S. �

It remains to answer the question which methods inherit nonexpansivity.

Theorem 1.5.5 Gauß methods are B-stable and therefore A-stable.

Proof Let f be dissipative and sufficiently smooth, x, y ∈ R
d. Let τ > 0 be small enough

such that the collocation polynomials

u(0) = x u(τ) = Ψτx

v(0) = y v(τ) = Ψτy

exist. Set

g(θ) := |u(θτ)− v(θτ)|2.

g is a polynomial of degree at most 2s. Then

g′(θ) = 2τ〈u′(θτ)− v′(θτ), u(θτ)− v(θτ)〉. (1.12)

1.5 Dissipative Systems and A-stability of Gauß Methods 23

The fundamental theorem of calculus yields

|Ψτx−Ψτy|2 = g(1)

= g(0) +

∫ 1

0
g′(θ)dθ

= |x− y|2 +

∫ 1

0
g′(θ)dθ.

It is sufficient to show ∫ 1

0
g′(θ)dθ ≤ 0.

g′ is a polynomial of degree 2s− 1. Therefore, Gauß quadrature is exact.

∫ 1

0
g′(θ)dθ =

s∑

j=1

bjg
′(cj) (1.13)

Now we use the collocation conditions

u′(cjτ) = f(u(cjτ))

v′(cjτ) = f(v(cjτ)).

Insert into (1.13) using (1.12)

g′(cj) = 2τ〈u′(cjτ)− v′(cjτ), u(cjτ)− v(cjτ)〉

= 2τ〈f(u(cjτ))− f(v(cjτ)), u(cjτ)− v(cjτ)〉

≤ 0 because f is dissipative.

As bj ≥ 0 (stability of Gauß quadrature [9]), this concludes the proof. �

Example 1. The midpoint rule Ψτx = x + τf
(
1
2(x+Ψτx)

)
is a 1-stage Gauß method

and therefore B-stable. Its stability function is

R(z) =
1 + z

2

1− z
2

.

2. The trapezoidal rule Ψτx = x+ τ
2 (f(x) + f(Ψτx)) has the same stability function

R(z) =
1 + z

2

1− z
2

.

and is A-stable but it is not B-stable:

Consider
f(x) =

{
|x|3 x ≤ 0
−x2 x ≥ 0

24 1 Stiff Differential Equations

f is monotonically decreasing and therefore dissipative.
x′ = f(x) has the fixed point x∗ = 0.
If the trapezoidal rule were B-stable, then

|Ψτx| = |Ψτx−Ψτx∗| ≤ |x− x∗| = |x|.

But x = −2 and τ = 36
7 gives

Ψτx = 2.5 > 2 = |x|.

Theorem 1.5.6 Let f be dissipative and sufficiently smooth. Then the nonlinear system

ki = f



x+ τ

s∑

j=1

aijkj



 , i = 1, . . . , s

associated with a Gauß method has a unique solution for any τ ≥ 0 and all x ∈ R
d.

Proof [4, Theorem 6.54]
Illustration (very special case): d = 1, implicit Euler

k1 −f(x+ τk1)
︸ ︷︷ ︸

mon. increasing
︸ ︷︷ ︸

strictly mon. increasing

= 0

Therefore uniquely solvable. �

1.6 Preserving Asymptotic Stability: Nonlinear Systems

We consider the nonlinear autonomous system

x′ = f(x), f : Rd → R
d

For (technical) simplicity we assume d = 1.
Our aim is to find criteria for Ψτ which guarantee asymptotic stability of fixed points of the
nonlinear recursion

xk+1 = Ψτxk.

Theorem 1.6.1 Let Ψ : R → R be continuously differentiable with fixed point x∗, i.e.,
Ψ(x∗) = x∗, and |Ψ′(x∗)| < 1. Consider

xk+1 = Ψ(xk), x0 ∈ R given.

Then x∗ is asymptotically stable in the sense that

∃δ > 0 : lim
k→∞

xk = x∗ for |x0 − x∗| < δ.

1.6 Preserving Asymptotic Stability: Nonlinear Systems 25

Proof Consider the Taylor expansion

Ψ(x) = Ψ(x∗) + Ψ′(x∗)(x− x∗) + g(x− x∗) (1.14)

with

lim
x→0

g(x)

x
= 0.

Inserting Ψ(x∗) = x∗ and (1.14) into the recursion yields

xk+1 − x∗ = Ψ′(x∗)(xk − x∗) + g(xk − x∗).

Choose β > 0 such that
|Ψ′(x∗)|+ β < 1

and δ > 0 such that

|g(x − x∗)| ≤ β|x− x∗| ∀x : |x− x∗| < δ.

Assuming |xk − x∗| < δ we get

|xk+1 − x∗| ≤ |Ψ′(x∗)||xk − x∗|+ |g(xk − x∗)|

≤ (|Ψ′(x∗)|+ β)|xk − x∗|.

Hence |x0 − x∗| < δ inductively leads to

|xk+1 − x∗| ≤ (|Ψ′(x∗)|+ β)k+1|x0 − x∗| → 0 for k → ∞.

�

Remark The result and the proof directly extend to d > 1 if |Ψ′(x∗)| < 1 is replaced by
ρ(DΨ(x∗)) < 1. The main ingredient for this is that ρ(A) < 1 implies that there is a vector
norm ‖ · ‖ and an associated matrix norm ‖ · ‖ such that ‖A‖ < 1 [13].

We will now consider the inheritance of asymptotic stability of fixed points.
Let x′ = f(x) be a scalar equation with f : R → R sufficiently smooth (continuosly differen-
tiable). Let further x∗ ∈ R be a fixed point of f .
We know that f ′(x∗) < 0 implies that x∗ is asymptotically stable (see Theorem 1.1.7).
Application of a Runge-Kutta method yields

xk+1 = Ψτxk. (1.15)

Question Is x∗ an asymptotically stable fixed point of (1.15)?
In the linear case f(x) = λx the answer to this question is yes if Ψτ is A-stable.

Remark Let R be the stability function of Ψτ .

Ψτ A-stable ⇔ C− ⊂ S = {z ∈ C||R(z)| ≤ 1}

⇒ |R(z)| < 1 ∀z : ℜz < 0

see [4, Theorem 6.13].

26 1 Stiff Differential Equations

Question Does this result extend to the nonlinear case?

Lemma 1.6.2 (Invariance under linearization) Let x∗ be a fixed point of x′ = f(x),
i.e., f(x∗) = 0, and let Ψτ be a Runge-Kutta method. Then

(i) Ψτ (x∗) = x∗

(ii) Ψτ (x) = x∗ +R(τf ′(x∗))(x− x∗) + g(x− x∗) with g(x) = o(|x|).

Proof 1. Consider the Runge-Kutta method

Ψτ (x) = x+ τ

s∑

i=1

biki

ki = f(x+ τ

s∑

j=1

aijkj), i = 1, . . . , s.

Insert ki = 0 for i = 1, . . . , s to see that ki(x
∗) is a solution for x = x∗.

2. Consider the Taylor expansion

f(x) = f(x∗) + f ′(x∗)(x− x∗) + u(x, x− x∗) (1.16)

= f ′(x∗)(x− x∗) + u(x, x− x∗)

with |u(x, x − x∗)| = 1
2f

′′(ρ(x))|x − x∗|2 ≤ c|x − x∗|2. Insert (1.16) into the
Runge-Kutta method to obtain

Ψτ (x) = x+ τ

s∑

i=1

biki

ki = f(x+ τ

s∑

j=1

aijkj) (1.17)

= f ′(x∗)(x− x∗ + τ

s∑

j=1

aijkj) + u(x+ τ

s∑

j=1

aijkj , x− x∗ + τ

s∑

j=1

aijkj

︸ ︷︷ ︸

=:yi(x,k)

).

Let

Ψ̃τ (x) = x+ τ

s∑

i=1

bik̃i

k̃i = f ′(x∗)(x− x∗ + τ

s∑

j=1

aij k̃j). (1.18)

Theorem 1.3.1 implies

Ψ̃τ (x) = x∗ +R(τf ′(x∗))(x − x∗), τ ≤ τ∗

1.6 Preserving Asymptotic Stability: Nonlinear Systems 27

where R(z) = P (z)
Q(z) is the stability function of Ψτ .

It is still to be shown that

Ψτx− Ψ̃τx = o(|x− x∗|).

Matrix formulation of (1.17) and (1.18), respectively, with

k =






k1
...
ks




 , k̃ =






k̃1
...

k̃s




 , e =






1
...
1






yields

(I − τf ′(x∗)A)k − f ′(x∗)(x− x∗)e = U(x, k) (1.19)

(I − τf ′(x∗)A)k̃ − f ′(x∗)(x− x∗)e = 0 (1.20)

with

U(x, k) =






u(y1(x, k) + x∗, y1(x, k))
...

u(ys(x, k) + x∗, ys(x, k))




 .

(1.19)-(1.20) and multiplication with (I − τf ′(x∗)A)−1 (τ < τ∗!) yields

k − k̃ = (I − τf ′(x∗)A)−1U(x, k).

It is sufficient to show ‖U(x, k)‖ = o(|x− x∗|)

|u(yi(x, k) + x∗, yi(x, k))| ≤ c|x− x∗ + τ

s∑

j=1

aijkj |
2. (1.21)

Now ki(x
∗) = 0 and the implicit function theorem provides

∃δ > 0 : |kj(x)| ≤ c|x− x∗|, j = 1, . . . , s if |x− x∗| < δ.

Insert into (1.21) to conclude the proof.

�

Theorem 1.6.3 Let x∗ ∈ R be a fixed point of x′ = f(x) with f ∈ C2(R) and f ′(x∗) < 0,
i.e., x∗ is asymptotically stable. Let Ψτ be an A-stable Runge-Kutta method. Then x∗ is an
asymptotically stable fixed point of Ψτ .

Proof x∗ is a fixed point of Ψτ by Lemma 1.6.2 (i). To use Theorem 1.6.1 we have to show
∣
∣
∣
∣

d

dx
Ψτx

∣
∣
∣
∣
x=x∗

< 1.

Lemma 1.6.2 (ii) yields

Ψτx−Ψτx∗

x− x∗
=

x∗ +R(τf ′(x∗))(x − x∗) + g(x− x∗)− x∗

x− x∗

= R(τf ′(x∗)) +
g(x− x∗)
x− x∗

x→x∗

→ R(τf ′(x∗)).

28 1 Stiff Differential Equations

Hence,
d

dx
Ψτx|x=x∗ = R(τf ′(x∗)).

Since Ψτ is A-stable,

τf ′(x∗) < 0 ⇒ |R(τf ′(x∗))| < 1.

�

Remark Theorem 1.6.3 can be directly extended to systems (see [4, Theorem 6.23]).

A Roadmap of Notions

Stiffness: (asymptotic) stability of fixed points (continuous problem)

• sufficient criteria for (asymptotic) stability
linear case (eigenvalues) → nonlinear case by linearization (only asymp. stability)

(asymptotic) stability of recursions (discrete problem)

• sufficient criteria for (asymptotic) stability
linear case → nonlinear case by linearization

inheritance of (asymptotic) stability

• linear case: x′ = λx (x′ = Ax)

– stability function, stability domain
criterion for inheritance: A-stability

– construction of A-stable methods: collocation methods, Gauß methods

• nonlinear case: x′ = f(x), only asymptotic stability

criterion for inheritance: A-stability

Question Could we get something like A-stability “cheaper”?

1.7 Algorithmic Aspects of Implicit RK’s (Gauß Methods)

We consider

x′ = f(x), f : Rd → R
d

and the implicit Runge-Kutta method

Ψτx = x+ τ

s∑

i=1

biki

ki = f(x+ τ
s∑

j=1

aijkj), i = 1, . . . , s

1.7 Algorithmic Aspects of Implicit RK’s (Gauß Methods) 29

with d · s unknowns and d · s equations.
Reformulation in symmetric form:

gi := x+ τ

s∑

j=1

aijkj ⇒ kj = f(gj)

Ψτx = x+ τ

s∑

i=1

bif(gi)

gi = x+ τ
s∑

j=1

aijf(gj), i = 1, . . . , s

The advantage of this form is that differentiating gi does not produce inner derivatives. The
disadvantage is that there are s additional f -evaluations.

To avoid cancellations, we solve for corrections zi = gi − x, i = 1, . . . , s

Ψτx = x+ τ

s∑

i=1

bif(x+ zi) (1.22)

zi = τ
s∑

j=1

aijf(x+ zj), i = 1, . . . , s. (1.23)

To save f -evaluations in (1.22), we can write

z = τA






f(x+ z1)
...

f(x+ zs)




 , z =






z1
...
zs




 .

Assume that A = (aij)
s
i,j=1 is invertible and compute A−1 (s is moderate!). Then (1.22) can

be rewritten as

Ψτx = x+

s∑

i=1

bi(A
−1z)i.

Vector form of (1.23):

z = τF (z), F = (Fi)
s
i=1, Fi(z) =

s∑

j=1

aijf(x+ zj)

1.7.1 Fixed point iteration

zν+1 = τF (zν), z0 = 0 (1.24)

Why is z0 = 0 a good initial iterate?

Proposition 1.7.1 Let f be continuously differentiable. Then there is a τ∗ > 0 such that
(1.24) converges to the solution z for τ ≤ τ∗.

30 1 Stiff Differential Equations

Proof 1. Find K ⊂ Rsd closed and bounded such that τF (K) ⊂ K:
Choose arbitrary c > 0. Then

∃c1 > 0 : ‖F (z)‖ ≤ c1 ∀z : ‖z‖ < c.

Let τ∗1 = c
c1
. Then

z ∈ K := {z ∈ R
sd|‖z‖ ≤ c} ⇒ τF (z) ∈ K ∀τ ≤ τ∗1 .

Hence, τF (K) ⊂ K.

2. Contractivity: ‖τF (x) − τF (y)‖ ≤ q‖x− y‖ with q < 1 ∀x, y ∈ K
Jacobian:

DF (z) = (Bij)
s
i,j=1 ∈ R

sd×sd, Bij = aijDf(x+ zj) ∈ R
d×d

Mean value theorem:

‖τF (x)− τF (y)‖ ≤ τ‖DF (ξ)‖‖x − y‖ ≤ q‖x− y‖

with q = τ maxz∈K ‖DF (z)‖ < 1 for τ < τ∗ < min{τ∗1 ,
1

maxz∈K ‖DF (z)‖}

3. x0 = 0 ∈ K

The assertion follows from Banach’s fixed point theorem. �

Example The bacteria equation

x′ = f(x) = αx− βx2

is stiff for α, β >> 1 and has the fixed point x∗ = α
β
. The function F corresponding to the

implicit Euler scheme satisfies

F (z) = f(x+ z) = α(x+ z)− β(x+ z)2

F ′(z) = α− 2β(x+ z)

‖F ′(z)‖ ≈ α >> 1 for x ≈ x∗, z ≈ 0

⇒ τ∗ ≈
1

α
<< 1

Stiffness causes stepsize reduction!

Consequence Do not use simple fixed point iteration for implicit Runge-Kutta methods.
Leninger/Willoughby: Timestep restriction of this form arise for any iteration involving only
f -evaluations.

1.7.2 Newton iteration and simplifications

We consider the ordinary Newton method for

z − τF (z) = 0

1.7 Algorithmic Aspects of Implicit RK’s (Gauß Methods) 31

z0 = 0

(I − τDF (zν))∆zν = −(zν − τF (zν))

zν+1 = zν +∆zν

where the Jacobian I − τDF (z) is given by

DF (z) = (aijDf(x+ zj))
s
i,j=1.

Then the computational effort for each step is

• (s · d)2 scalar function evaluations to obtain DF (z)ν

• solution of a linear system

Convergence properties local quadratic convergence, globalization by damping

Simplified Newton

Basic idea Trade local quadratic convergence in for reduced computational effort.
Replace Df(x+ zνj) by J = Df(x) to obtain

B = I − τ(aijDf(x))si,j=1

= I −









τa11J τa12J . . . τa1sJ

τa21J
...

... τas−1sJ
τas1J . . . τass−1J τassJ









= I − τA⊗ J

with the tensorproduct A⊗B ∈ R
nk×ml of A ∈ R

n×m and B ∈ R
k×l defined by

A⊗B =






a11B . . . a1mB
...

...
an1B . . . anmB




 .

Consequence Only one LU-decomposition is sufficient.

Remark If A is invertible, then the tensorproduct structure can be used to reduce the
computational effort for the LU-decomposition [7, IV.8].

Convergence properties Local linear convergence for sufficiently small τ [12, Section 12.6]
(see also [3]).

32 1 Stiff Differential Equations

Heuristic stopping criterion for contractions Stop the iteration as soon as

‖z − zν‖ = O(τp) = cτp.

Very rough but simple estimate:
Under the assumption ‖z − zν+1‖ ≤ q‖z − zν‖ with q < 1 we get the a posteriori error
estimate

‖z − zν+1‖ ≤
q

1− q
‖zν+1 − zν‖.

Proof

‖z − zν+1‖ ≤ q‖z − zν‖ ≤ q(‖z − zν+1‖+ ‖zν+1 − zν‖)

�

Approximation of unknown convergence rate q

q ≈ θ =
‖zν+1 − zν‖

‖zν − zν−1‖

motivated by

‖zν+1 − zν‖ ≤ q‖zν − zν−1‖.

Unfortunately, θ ≤ q is equivalent to θ
1−θ

≤ q
1−q

rather than q
1−q

≤ θ
1−θ

. Therefore, the
theoretical justification of the upper bound is lost.

Bold question What happens if only one Newton step is performed in each time step?

1.8 Linearly Implicit One-Step-Methods

Sections 1.1 and 1.6 suggest that stability can be obtained by linearization.

Basic idea

• rewrite x′ = f(x) as

x′ = Jx+ (f(x)− Jx), J = Df(x)

• use an implicit discretization only for the leading linear term

General form of a s-stage linearly implicit Runge-Kutta method (sometimes called Rosenbrock-
Wanner method):

Ψτx = x+ τ
s∑

i=1

biki (1.25)

ki = J(x+ τ
i∑

j=1

βijkj) + (f(x+ τ
i−1∑

j=1

αijkj)− J(x+ τ
i−1∑

j=1

αijkj))

1.8 Linearly Implicit One-Step-Methods 33

with coefficients B = (βij)
s
i,j=1, A = (αij)

s
i,j=1, b = (bi)

s
i=1.

The computational effort comprises the solution of s linear systems of the form

(I − τβiiJ)ki = τ

i−1∑

j=1

(βij − αij)Jkj + f(x+ τ

i−1∑

j=1

αijkj).

Therefore, it contains s LU-decompositions of (I − τβiiJ) in R
d×d (not in R

sd×sd like the
LU-composition of (I − τA ⊗ Df)). If we additionally assume β11 = β22 = . . . = β, then
only one LU-decomposition of I − τβJ is needed.

Example We consider the linearly implicit Euler method: b1 = 1, β11 = 1, α11 = 0

Ψτx = x+ τk1

k1 = J(x+ τk1) + f(x)− J(x)

⇔ (I − τJ)k1 = f(x)

and the implicit Euler with a single Newton step starting from z0 = 0. The implicit Euler
scheme can be written as

Ψτx = x+ z1

z1 = τf(x+ z1).

A Newton step on z − τf(x+ z) yields

Ψτx = x+ z1

(I − τJ)(z1 − z0) = −(z0 − τf(x+ z0))

⇐⇒ (I − τJ)z1 = τf(x) with z0 = 0

The two methods are identical.

Proposition 1.8.1 Assume that maxλ∈σ(J) ℜλ = ν(J) ≤ 0 and β ≥ 0. Then (I − τβJ) is
invertible for all τ ≥ 0.

Proof Let λ ∈ σ(J). We have to show

1− τβλ 6= 0

but obviously
ℜ(1− τβλ) ≥ 1.

�

Consequence For stiff systems no timestep restriction is required for solvability.

Proposition 1.8.2 A Rosenbrock-Wanner method
B A

bT
is A-stable if and only if the

Runge-Kutta method
B

bT
is A-stable.

34 1 Stiff Differential Equations

Proof Application of the Rosenbrock-Wanner method to x′ = λx with J = λ leads to

Ψτx = x+ τ

s∑

i=1

biki

ki = λ(x+ τ

i∑

j=1

βijkj)

and thus Ψτ = R(τλ) with the stability function R of
B.

bT
. �

Construction of higher order methods

Proposition 1.8.3 The method (1.25) is consistent with order p = 1 if

s∑

j=1

bj = 1.

It is consistent with order p = 2 if additionally

s∑

j,k=1

bj(αjk + βjk) =
1

2
.

It is consistent with order p = 3 if additionally

s∑

j,k,l=1

bjβjkβjl =
1

3

s∑

j,k,l=1

bj(αjk + βjk)(αkl + βkl) =
1

6
.

Proof [7, IV.7]

Stability

It is difficult to have high order, βii = β > 0 and A-stability. The following definition
provides a compromise.

Definition 1.8.4 A Runge-Kutta method is called A(α)-stable if

C(α) := {z = reiφ|r ≥ 0, |π − φ| ≤ α} ⊂ S.

1.9 Extrapolation Methods 35

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

C(α)

α

The following basic schemes are A(α)-stable:

GRK4 α = 90
GRK4T α = 89, 3

see [7, IV].

Modifications

• inexact Jacobian J (W-methods)

• sporadically recomputed J

1.9 Extrapolation Methods

Basic idea Consider a low order scheme Ψτ
∗ and a partition

t < t+ τj < t+ 2τj < . . . < t+ (nj − 1)τj < t+ τ, τj =
τ

nj

with a step number sequence n0 < n1 <

T10

t+ τt

T20

Compute

Tj0 =
(
Ψ

τj
∗
)nj x.

Extrapolate to τ = 0.

36 1 Stiff Differential Equations

T33

T20 T10 T00 τ

Φτx

Use method of Aitken-Neville (Numerics I) for the computation

T00

ց
T10 → T11

ց ց
T20 → T21 → T22
...

...
...

. . .

Tm0 → Tm1 → Tm2 . . . Tmm

with

Tj,k = Tj,k−1 +
Tj,k−1 − Tj−1,k−1
(
nj−k

nk

)2
− 1

.

Define

Ψτx := Tmm.

Proposition 1.9.1 Assume there is an asymptotic expansion

Ψτ
∗x = Φτx+

n+1∑

k=1

ckτ
k + rn+2(τ)τ

n+2, τ ≤ τ∗

with ‖rn+2‖∞ ≤ C. Then

|Φτx−Ψτx| ≤
cn+1

n0 . . . nm
τm+1 +O(τm+2)

i.e., Ψτ is consistent with order m.

Proof See [9] or any other textbook.

Example Consider the linearly implicit Euler method

Ψτ
∗x = x+ τk1

(I − τJ)k1 = f(x), J = Df(x).

1.10 Gradient Flows and Parabolic PDEs 37

An asymptotic expansion exists for sufficiently smooth f [5].
The extrapolation of the linearly implicit Euler method is not A-stable, but A(α)-stable

T11 : A-stable

T22 : A(89,85)-stable

...

T77 : A(89,81)-stable

It is tempting to use the trapezoidal rule

Ψτ
∗x = x+

τ

2
(f(x) + f(Ψτ

∗x))

because it has an asymptotic expansion in τ2.

→֒ Tmm = Φτx+O(τ2(m+1))

Unfortunately, extrapolation destroys stability properties.
Remedy: Linearly implicit midpoint rule

(I − τJ)xk+1 − (I + τJ)xk−1 = 2τ(f(xk)− Jxk)

See [1], [4, 6.4.2].

1.10 Gradient Flows and Parabolic PDEs

We first consider discrete gradient flows as an example for a class of stiff ODEs.
Continuous gradient flows are leading to parabolic PDEs. By discretization in space (method
of lines) we will discover a large class of arbitrary large and arbitrary stiff systems of ODEs.

Definition 1.10.1 A functional E : Rd → R is called convex if

E(ωx+ (1− ω)y) ≤ ωE(x) + (1− ω)E(y) ∀ω ∈ [0, 1]. (1.26)

E is called strictly convex if the equality in (1.26) holds only at ω = 0 and ω = 1.

Example 1. E defined by

E(x) =
d∑

i=1

xibi for x ∈ R
d, b ∈ R

d fixed

is convex but not strictly convex.

2. E defined by

E(x) =
1

2

d∑

i=1

(x2i − bixi) for x ∈ R
d, b ∈ R

d fixed

is strictly convex.

38 1 Stiff Differential Equations

Example We consider the following four examples of scalar, convex functions:

Figure 1.1: convex

Figure 1.2: strictly convex

Figure 1.3: convex

Figure 1.4: strictly convex

Definition 1.10.2 A functional E : Rd → R is called coercive if

lim
‖x‖→∞

E(x) = ∞.

The functions in Figure 1.1 and Figure 1.2 are coercive. The functions in Figure 1.3 and
Figure 1.4 are not coercive.

Lemma 1.10.3 A coercive, continuous, convex functional E : Rd → R has at least one
minimum. If E is strictly convex, then the minimum is unique.

Proof Exercise

Definition 1.10.4 Let E : Rd → R be convex and continuously differentiable. The initial
value problem

x′(t) = −∇E(x), x(0) = x0, t > 0

is called the gradient flow associated with E.

∇E

E = const

x(t)

x0

1.10 Gradient Flows and Parabolic PDEs 39

Lemma 1.10.5 A gradient flow has the following properties

1. For any t > 0, E(x(t)) ≤ E(x0) holds.

2. f(x) = −∇E(x) is dissipative, i.e.,

〈−∇E(x) +∇E(y), x − y〉 ≤ 0

3. Every fixed point of the gradient flow is a minimum of E and vice versa.

4. Let E be strictly convex. Then all fixed points of the gradient flow are asymptotically
stable.

5. Let E be strictly convex and coercive. Then x∗ = limt→∞ x(t) is a fixed point of the
gradient flow for all x0.

Proof Exercise

Example Let f : Rd → R
d such that there exists a strictly convex, coercive, and continu-

ously differentiable E : Rd → R with f = −∇E. We are looking for a zero point of f :
Integrate the gradient flow of E using a “good” initial value until you reach a fixed point.
Then Lemma (1.10.5) states that x∗ is a minimum of E which must be a zero of f .
This procedure might be very slow.

Continuous gradient flows: The heat equation

Let Ω be a compact subset of R2 and C1(Ω) the set of all continuously differentiable func-
tionals v : Ω → R. Then the “energy” is given by

E(u) =

∫

Ω

(
1

2
|∇u|2 − bu

)

dx, u ∈ C1(Ω), b ∈ C(Ω)

where u denotes the temperature distribution and b the density of the heat source.
Let 〈·, ·〉 denote the L2 scalar product 〈v,w〉 =

∫

Ω v ·w dx. The derivative of E at u ∈ C1(Ω)
is a 1-form ∇E(u)(·) : C1(Ω) → R

∇E(u)(v) = 〈∇u,∇v〉 − 〈b, v〉.

Lemma 1.10.6 Let u, ū ∈ C1(Ω) such that

〈u, v〉 = 〈ū, v〉 ∀v ∈ C1(Ω).

Then u = ū.

Proof It is sufficient to show

〈u, v〉 = 0 ∀v ⇒ u = 0.

Assume

∃x ∈ Ω : u(x) > 0

40 1 Stiff Differential Equations

then there is a neighborhood V of x with

u(x̄) > 0 ∀x̄ ∈ V.

Then there is a v0 ∈ C1(Ω) with v0 6= 0, v0 ≥ 0 and v0(x̄) ∀x̄ /∈ V . Inserting v0 we
obtain

〈u, v0〉 =

∫

V

u(x)v0(x) dx > 0.

�

Gradient flow of E:

d

dt
〈u, v〉 = 〈ut, v〉 = −∇E(u)(v)

= −〈∇u,∇v〉+ 〈b, v〉 ∀v ∈ C1(Ω)

This is the weak form of the heat equation. Green’s identity and Lemma 1.10.6 provide

〈ut, v〉 = 〈∆u, v〉 + 〈b, v〉 ⇒ ut = ∆u+ b ∧
∂

∂n
v = 0 on ∂Ω

which is the strong form of the heat equation.

If b ≡ 0, then the heat energy
∫
u dx is preserved:

〈ut, v〉 = −〈∇u,∇v〉 ∀v ∈ C1(Ω)

Insertion of v = 1 yields

0 = 〈ut, 1〉 =

∫

Ω

∂

∂t
u dx =

∂

∂t

∫

Ω
u dx.

An initial-boundary-value problem for the heat equation

We consider the heat equation

ut = uxx + b

with initial conditions

u(x, 0) = u0(x) ∀x ∈ Ω = [a, b]

and boundary conditions

u(a, t) = u(b, t) = 0 ∀t ∈ [0, T].

For the discretization of the problem we consider the following two options.

Method of lines (first space, then time) The basic idea is to discretize in space in order
to obtain an ODE.
We choose an equidistant mesh

xi = a+ ih, i = 0, . . . , n, h =
b− a

n
.

1.10 Gradient Flows and Parabolic PDEs 41

Then, assuming u(·, t) ∈ C4(a, b) ∀t ∈ (0, T], we have

uxx(xi) =
1

h2
(u(xi−1)− 2u(xi) + u(xi+1)) +O(h2), i = 1, . . . , n− 1.

Compute approximations Ui(t) of u(xi, t), t ∈ [0, T] to obtain the ODE:

U ′
i(t) =

1

h2
(Ui−1(t)− 2Ui(t) + Ui+1(t)) +Bi

U0(t) = Un(t) = 0

with Bi(t) = b(xi, t). This can be rewritten in matrix form

U ′ = AU +B

U = (Ui)
n−1
i=1 , B = (Bi)

n−1
i=1

A =
1

h2









−2 1 0

1 −2
. . .

. . .
. . . 1

0 1 −2









∈ R
n−1×n−1.

A has the following eigenvalues:

λi = −
4n2

(b− a)2
sin2

(
i

2n
π

)

.

Thus,

−4h−2 = −
4n2

(b− a)2
≈ λn−1 < λn−2 < . . . < λ1 ≈ −

4n2

(b− a)2
π2

4n2
= −

(
π

(b− a)

)2

< 0.

The ODE is arbitrarily stiff because

|λn−1|

|λ1|
→ ∞ for n → ∞.

Hence, severe timestep restrictions would arise for explicit schemes.
For example, the timestep restriction for discretization by the explicit Euler method is

τ <
2

|λn−1|
≈

1

2
h2.

Consequence Use implicit schemes.
advantage: reuse of ODE software
disadvantage: fixed spatial mesh

42 1 Stiff Differential Equations

Rothe’s method (first time, then space) The basic idea is the following

1. Consider

u′ = Lu

Lu = u′′ + b

as an ODE in functionspace, i.e., u(t) ∈ C2(Ω).

2. Apply existing ODE theory (discretization in time, stepsize control,...).

3. Approximate arising boundary value problems in each timestep.

advantage: adaptive spatial mesh
disadvantage: theoretically demanding (see [2])

2 Differential Algebraic System

2.1 Motivation

Example (Charging a capacitor (electric circuits)) We consider an electric circuit of
the following form

x3

x2 x1

R U

The problem can be described by the equations

applied voltage U : x1 − x3 − U = 0
Kirchhoff’s law: c(x′1 − x′2) +

x3−x2
R

= 0
reference value: x3 = 0

Rewriting this in matrix form yields





0 0 0
c −c 0
0 0 0



x′ =





1 0 −1
0 1

R
− 1

R

0 0 1



x+





−U
0
0



 . (2.1)

Example (Pendulum (multibody dynamics)) We consider the mathematical pendu-
lum as depicted in the following draft

x1

mg

m

r0

x2
The energy of the system is composed of

kinetic energy: T = 1
2m
(
(x′1)

2 + (x′2)
2
)

potential energy: U = mgx2, g gravity

We denote the Lagrangian by

L = T − U −
1

2
λ(x21 + x22 − r20)

where λ is a Lagrange multiplier (virtual force
enforcing r20 = x21 + x22).

The corresponding Euler-Lagrange equations

d

dt

(
∂L

∂q′

)

−
∂L

∂q
= 0 q = x1, x2, λ

43

44 2 Differential Algebraic System

take the form

mx′′1 + x1λ = 0

mx′′2 + x2λ+mg = 0

x21 + x22 − r20 = 0.

Rewriting this in vector form yields




m 0 0
0 m 0
0 0 0



x′′ =





−x1λ
−x2λ−mg
x21 + x22 − r20



 . (2.2)

Example (Chemical engineering) For another example see [4].

Remark (2.1) and (2.2) are mixtures of differential and algebraic equations. Therefore,
they are called differential-algebraic equations (DAEs).

How to treat DAEs

First option: Eliminate one or more unknowns by the algebraic equation
We consider the first example and insert x3 = 0, x1 = U to obtain

(2.1) ⇔ −cx′2 −
x2
R

= 0.

Second option: Reformulate the problem in suitable unknown functions
We consider the second example and introduce polar coordinates

x1 = r cosφ

x2 = r sinφ.

The derivatives are

x′1 = −rφ′ sinφ

x′2 = rφ′ cosφ

x′′1 = −rφ′′ sinφ− r(φ′)2 cosφ

x′′2 = rφ′′ cosφ− r(φ′)2 sinφ.

Inserting into (2.2) we get

−mrφ′′ sinφ−mr(φ′)2 cosφ+ λr cosφ = 0 (2.3)

mrφ′′ cosφ−mr(φ′)2 sinφ+ λr sinφ+mg = 0 (2.4)

r2(cos2 φ+ sin2 φ)− r20 = 0 ⇒ r(t) ≡ r0. (2.5)

Computing ((2.3) · sinφ− (2.4) · cosφ) we get

mrφ′′ +mg cosφ = 0

which is an ODE again.
Polar coordinates are minimal coordinates for the pendulum.

2.2 Linear DAEs: Existence and Uniqueness 45

Unfortunately in most practical applications

• the algebraic equation part cannot be converted in closed form.

• minimal coordinates are not available.

2.2 Linear DAEs: Existence and Uniqueness

We consider the implicit system

Ex′ = Ax− b, E,A ∈ R
d×d, b ∈ R

d. (2.6)

First we will take a look at the two extreme cases:

1. If E is regular, then multiplication by E−1 yields

x′ = E−1Ax− E−1b.

This is a standard ODE system.

2. If E = 0, then (2.6) takes the form

Ax = b.

This is a standard linear system.

Hence, existence results for DAEs generalize existence results for ODEs and linear algebraic
systems.
The basic idea for the analysis of (2.6) is the decoupling by suitable transformation of E and
A.

Definition 2.2.1 The pairs (E1, A1) and (E2, A2) are equivalent, i.e.,

(E1, A1) ∼ (E2, A2)

if there exist P,Q ∈ R
d×d regular such that

E2 = PE1Q, A2 = PA1Q. (2.7)

(2.7) is called equivalence transformation.

Remark The relation ∼ is an equivalence relation (reflexive, symmetric, transitive).

Proof Exercise

Example Let A ∈ R
d×d, I =






1 0
. . .

0 1




 ∈ R

d×d. Then

(I,A) ∼ (I, J)

with Jordan normal form J = diag(J1, . . . , Jm).

46 2 Differential Algebraic System

Proposition 2.2.2 Let (E1, A1) ∼ (E2, A2), i.e.,

E2 = PE1Q

A2 = PA1Q.

Then x1 solves E1x
′
1 = A1x1 if and only if x2 = Q−1x1 solves E2x

′
2 = A2x2.

Proof

E1x
′
1 = A1x1 ⇔ PE1QQ−1x′1 = PA1QQ−1x1

⇔ E2(Q
−1x1)

′ = A2Q
−1x1

�

We will need some facts from linear algebra for later use.

Definition 2.2.3 Let E, A ∈ R
d×d. The polynomial

p(λ) = det(λE −A)

is called characteristic polynomial of (E,A).
The pair (E,A) is called singular if p(λ) ≡ 0 and regular otherwise.

Remark Regularity/singularity is invariant under equivalence transformation.

Examples

1. (0, A) is regular ⇔ A is regular.

2.

((
1 1
1 1

)

,

(
1 1
1 1

))

is singular.

Proposition 2.2.4 Let (E,A) be singular. Then the homogeneous initial value problem

Ex′(t) = Ax(t), t > 0, x(0) = 0,

has at least two solutions.

Proof Obviously, x ≡ 0 solves the homogeneous initial value problem. We now show that
there is also another solution x 6≡ 0.

Let λ1, . . . , λd+1 ∈ R, λi 6= λj for i 6= j.
By assumption λiE −A is singular for i = 1, . . . , d+ 1. Hence,

∃vi ∈ R
d, vi 6= 0 : (λiE −A)vi = 0.

v1, . . . , vd+1 cannot be linearly independent. Hence,

∃αi ∈ R :

d+1∑

i=1

αivi = 0.

2.2 Linear DAEs: Existence and Uniqueness 47

Define

x(t) :=

d+1∑

i=1

αivie
λit 6≡ 0.

Then x(0) = 0 and

Ex′ =
d+1∑

i=1

αie
λitλiEvi =

d+1∑

i=1

αie
λitAvi = Ax.

�

Does regularity of (E,A) imply existence of solutions of (2.6)?

Proposition 2.2.5 Let L =
{
M = (mij) ∈ R

d×d|mij = 0, j > i
}

(lower triangular matri-
ces) and L0 = {M ∈ L|mii = 0} (strictly lower triangular matrices).

1. L ∈ L regular ⇒ L−1 ∈ L

2. L0 ∈ L0 ⇒ Ld
0 = 0 (nilpotent)

3. L ∈ L, L0 ∈ L0 ⇒ L · L0 ∈ L0

Proof Exercise

Proposition 2.2.6 Let (E,A) be regular. Then

(E,A) ∼

((
I 0
0 N

)

,

(
J 0
0 I

))

where J ∈ R
n×n, N ∈ R

m×m with d = n+m, both J and N have Jordan normal form and
Nν = 0, ν ≤ m.

Proof (E,A) regular ⇒ ∃λ0 ∈ R : det(λ0E −A) 6= 0,
i.e., (A− λ0E)−1 ∈ R

d×d exists.
Hence,

(E,A) ∼ (E,A − λ0E + λ0E)

∼
(
(A− λ0E)−1E, I + λ0(A− λ0E)−1E

)
. |

P = (A− λ0E)−1

Q = I

Let diag(J̄ , N̄) = T
(
(A− λ0E)−1E

)
T−1 be the Jordan normal form of (A−λ0E)−1E

where J̄ is regular (non-zero eigenvalues) and N̄ ∈ L0 (eigenvalue zero). Then

(E,A) ∼

((
J̄ 0
0 N̄

)

,

(
I + λ0J̄ 0

0 I + λ0N̄

))

|
P = T (A− λ0E)−1

Q = T−1

N̄ ∈ L0 ⇒ I + λ0N̄ ∈ L regular

∼

((
I 0
0 (I + λ0N̄)−1N̄

)

,

(
J̄−1 + λ0I 0

0 I

))

|
P =

(
J̄−1 0
0 (I + λ0N̄)−1

)

Q = I

(I+λ0N̄)−1 ∈ L, N̄ ∈ L0 ⇒ (I+λ0N̄)−1N̄ ∈ L0 ⇒
(
(I + λ0N̄)−1N̄

)ν
= 0, ν ≤ m.

Transformation of J̄−1 + λ0I and (I + λ0N̄)−1N̄ to Jordan normal form concludes the
proof. �

48 2 Differential Algebraic System

Using Proposition 2.2.6 provides the decoupling

y′ = Jy +f, y(0) = y0 (2.8)

Nz′ = z +g, z(0) = z0 (2.9)

with suitable f , g.
Existence and uniqueness for (2.8) is clear. We consider (2.9).

Proposition 2.2.7 Assume that g ∈ Cν ([0, T],Rm) and N from Proposition 2.2.6. Then,
without any initial conditions, the differential equation

Nz′ = z + g

has the unique solution

z = −
ν−1∑

i=0

N ig(i)

with ν denoting the size of the largest Jordan block of N .

Proof We denote

N = diag(Ni); Ni =








0 0
1 0

. . .
. . .

0 1 0








.

The different blocksNi decouple. Hence, it is sufficient to considerN =








0 0
1 0

. . .
. . .

0 1 0







.

Componentwise reformulation yields

0′ = z1 + g1 ⇒ z1 = −g1

z′1 = z2 + g2 ⇒ z2 = −g′1 − g2

z′2 = z3 + g3 ⇒ z3 = −g′′1 − g′2 − g3
...

z′m−1 = zm + gm ⇒ zm = −
m∑

i=1

g
(m−i)
i

with unique solutions zi. After taking a closer look at the powers N i, i = 1, . . . ,m− 1,
of N , elementary calculations yield

z = −
(
Ig +Ng′ +N2g′′ + · · ·+Nm−1g(m−1)

)
= −

m−1∑

i=0

N1g(i).

�

2.2 Linear DAEs: Existence and Uniqueness 49

Remark Existence requires consistent initial data

z0 = −
ν−1∑

i=0

N ig(i)(0).

Remark For ν > 1, existence requires smoothness of the right hand side

g ∈ Cν ([0, T],Rm) .

Definition 2.2.8 The index ν occurring in Proposition 2.2.7 is called (differentiation) index
of (2.6). We set ν = 0 if m = 0, i.e., if E is regular.

Remark The index is invariant under equivalence transformations (exercise).

Examples
Ex′ = Ax− b E regular ⇒ ν = 0

0 = Ax− b ⇒ ν = 1
(

0 0
1 0

)

x′ = Ax− b ⇒ ν = 2

Definition 2.2.9 Let

PEQ =

(
I 0
0 N

)

, PAQ =

(
J 0
0 I

)

, P b =

(
f

g

)

with N, J as in Proposition 2.2.6. The initial condition x0 ∈ R
d is called consistent with

(2.6) if

Q−1x0 =

(
y0
z(0)

)

with arbitrary y0 ∈ R
n and z = −

∑ν−1
i=0 N ig(i).

Theorem 2.2.10 Let (E,A) be regular with index ν ≤ d, b ∈ Cν
(
[0, T],Rd

)
, x0 ∈ R

d

consistent with (2.6). Then the initial value problem

Ex′(t) = Ax(t)− b, t > 0, x(0) = x0

for (2.6) has a unique solution.

Proof Proposition 2.2.6, 2.2.7

Index-1-problems

As an important special case we consider the semi-explicit DAE

y′ = Ay +Bz + f A ∈ R
n×n, B ∈ R

n×m, f : [0, 1] → R
n

0 = Cy +Dz + g C ∈ R
m×n, D ∈ R

m×m, g : [0, 1] → R
m.

(2.10)

Proposition 2.2.11 Let D ∈ R
m×m be regular. Then (2.10) has index ν = 1.

50 2 Differential Algebraic System

Proof

((
I 0
0 0

)

,

(
A B
C D

))

∼

((
I 0
0 0

)

,

(
A B

D−1C I

))

|
P =

(
I 0
0 D−1

)

Q = I

∼

((
I 0
0 0

)

,

(
A−BD−1C 0

D−1C I

))

|
P =

(
I −B
0 I

)

Q = I

∼

((
I 0
0 0

)

,

(
A−BD−1C 0

0 I

))

|
P = I

Q =

(
I 0

−D−1C I

)

∼

((
I 0
0 0

)

,

(
J 0
0 I

))

|
P =

(
T−1 0
0 I

)

Q =

(
T 0
0 I

)

where J = T−1(A−BD−1C)T is a Jordan decomposition. �

Remark The elimination of z is possible:

z = −D−1(Cy + g).

Thus, we obtain the ODE

y′ = (A−BD−1C)y −BD−1g + f

(state space form, ”model reduction”).

Remark Consistent initial data z0 ∈ R
m can be computed from

−Dz0 = Cy0 + g(0)

with given y0 ∈ R
n.

Index reduction

Differentiation leads to

y′ = Ay +Bz + f

−Cy′ −Dz′ = g′

which can be rewritten as the ODE
(

y′

z′

)

=

(
I 0

−C −D

)−1(
A B
0 0

)(
y
z

)

+

(
f
g′

)

. (2.11)

Each solution of the DAE (2.10) solves (2.11) provided that g ∈ C1[0, T]. For the converse
we refer to Lemma 2.3.3 later.

Remark There is a special perturbation theory (perturbation index) for DAEs (see [4,
3.1.3], [11, 3.4]).

2.3 Nonlinear Semi-explicit DAEs 51

2.3 Nonlinear Semi-explicit DAEs

We consider the initial value problem for the semi-explicit DAE

y′ = f(y, z) y(0) = y0
0 = g(y, z) z(0) = z0

(2.12)

for t ∈ (0, T].
Let z0 be consistent with the DAE in the sense that 0 = g(y0, z0).

Theorem 2.3.1 (local existence) Let f : Rn × R
m → R

n and g : Rn × R
m → R

m be
continuously differentiable with

gz(y, z) invertible ∀y ∈ R
n, z ∈ R

m. (2.13)

Then (2.12) has a unique solution for all y0 ∈ R
n, consistent data z0 ∈ R

m and sufficiently
small T .

Proof Consistency implies g(y0, z0) = 0. By the implicit function theorem, there are U ⊂
R
n open with y0 ∈ U , V ⊂ R

m open with z0 ∈ V and G : U → V differentiable such
that

g(y, z) = 0 (y, z) ∈ U × V ⇔ z = G(y) y ∈ U.

Inserting yields the state space form (model reduction)

y′ = f (y,G(y)) y ∈ U. (2.14)

F (y) := f (y,G(y)) differentiable implies that F is locally Lipschitz. Therefore, there
exists T > 0 such that (2.14) has a unique solution. �

Remark DAEs (2.12) with property (2.13) are called index-1. See [11, Chapter 4] for a
more detailed discussion.

Remark Computation of consistent initial data z0 requires the solution of the nonlinear
system

z0 ∈ R
m : g(y0, z0) = 0.

The state space form (model reduction)

Basic idea:

• Eliminate z = G(y) ⇔ g(y, z) = 0.

• Apply an arbitrary discretization for the resulting state space form

y′ = f (y,G(y)) = F (y).

52 2 Differential Algebraic System

State space RK-method in symmetric form

Ψτy = y + τ
s∑

i=1

biF (Yi)

Yi = y + τ

s∑

j=1

aijF (Yj)

Introduction of Zi = G(Yi) ⇔ 0 = g(Yi, Zi)

Ψτy = y + τ

s∑

i=1

bif(Yi, Zi)

Yi = y + τ
s∑

j=1

aijf(Yj, Zj)

0 = g(Yi, Zi) i = 1, . . . , s

Proposition 2.3.2 Assume that gz(y, z) is invertible for all y ∈ R
n, z ∈ R

m. Then the
state space RK-method converges with order p of Ψτ .

Proof Direct application of existing convergence theory

Advantages and drawbacks

⊕ reuse of existing discretizations and theory

⊖ explicit resolution of g(y, z) = 0 might cause very small time steps (implicit function
theorem)

⊖ each time step requires the solution of at least s nonlinear systems with m unknowns

The index reduction method

We differentiate the algebraic equation

0 = gy(y, z)y
′ + gz(y, z)z

′.

Rewriting this in explicit matrix form, assuming gz(y, z) 6= 0, we obtain
(

y
z

)′
=

(
I 0

gy(y, z) gz(y, z)

)−1(
f(y, z)

0

)
y(0) = y0
z(0) = z0.

(2.15)

Lemma 2.3.3 For sufficiently smooth g and consistent intial data z0 the initial value prob-
lems (2.12) and (2.15) are equivalent.

Proof (2.12) ⇒ (2.15): differentiation
(2.15) ⇒ (2.12): g(y, z) = 0 follows from

g(y, z) = g(y0, z0) +

∫ t

0
(g(y, z))′ ds

= 0 +

∫ t

0

(
gyy

′ + gzz
′) ds = 0.

�

2.3 Nonlinear Semi-explicit DAEs 53

Basic idea:

• Reformulate (2.12) as ODE (2.15) with consistent initial data.

• Apply suitable discretization to (2.15).

Advantages and drawbacks

⊕ simple reuse of existing discretizations

⊖ differentiation necessary (problem if g is not available in closed form)

⊖ structure of the problem is destroyed

Alternative: Linearly implicit extrapolation methods [4, 6.4.2]

3 Hamiltonian Systems

3.1 Energy and Symplecticity

In physics, classical mechanics are described by differential equations. The concept of energy
is of fundamental importance in this domain and mostly considered in the context of closed
Hamiltonian systems. The conservation of mechanical energy is a principle which states that
under certain conditions, the total mechanical energy of a system is constant. This leads us
to the concept of symplecticity.
As the topic of this section originated in this field we introduce this chapter by stating a
fundamental law of classical mechanics.

Example (Newton’s second law: conservation of momentum) Newton’s second law
states that the rate of change of momentum of a body is proportional to the resultant force
acting on the body and is in the same direction. In symbolic notation this can be written as

Mx′′ = F (x)

x : [0, T] → R
d

where
x denotes the location of the center of gravity of one or more bodies in space,
x′ denotes the velocity,
x′′ denotes the acceleration,
M ∈ R

d×d denotes the symmetric, positive definite mass matrix,
Mx′′ denotes the momentum,
F : Rd → R

d denotes the force field.

Thus, Newton’s second law is described by a differential equation typically fulfilling certain
characteristics.

Definition 3.1.1 F is called conservative or potential force if there is a potential U : Rd →
R of F , i.e., F = −∇U .

Remark If the Jacobian F ′ is symmetric, then F is conservative.
F conservative:

Mx′′ = −∇U(x) (3.1)

We will now introduce some examples taken from the natural sciences.

Example (Pendulum) A classical example is the mathematical pendulum which is de-
scribed by the equation

mφ′′ = −m
g

r0
cosφ = −U ′(φ)

U(φ) = m
g

r0
sinφ

54

3.1 Energy and Symplecticity 55

where φ denotes the angle, g the gravity, m the mass and r0 the radius.
For this problem there is an analytic solution available (using elliptic integrals).

Example (Kepler problem) The Kepler problem is a two-body problem arising in ce-
lestial mechanics. There are two bodies (planets) which motion is affected by the attrac-
tion between them. Let x1 and x2 denote their state in space, m1 and m2 their masses,
r12 = ‖x1 − x2‖ the distance between them, and U = −gm1m2

r12
the gravitational potential.

Newton’s law yields

m1x
′′
1 = −

∂

∂x1
U

m2x
′′
2 = −

∂

∂x2
U

Mx′′ = −∇U

M =

(
m1I 0
0 m2I

)
(
∈ R

6
)
.

Example (Classical molecular dynamics) Another example is the interaction of a vast
number of N atoms which spatial coordinates are denoted by Xi ∈ R

3, i = 1, ..., N and the
distances in between by rij = ‖xi − xj‖. The potential of the force field consists of

U = UB + UA + UT + UQ + UV dW

where

UB =

N∑

i,j=1
i>j

1

2
bij
(
rij − r∗ij

)2
: bond deformation

(deviation from a reference state x∗i with r∗ij =
∥
∥
∥x∗i − x∗j

∥
∥
∥ (analogue of springs))

UT : torsion potential

UA : angle deformation

UQ : Coulomb potential

UV dW : van-der-Waals interaction (quantum effects).

For the evaluation of −∇U fast multipole methods can be used (Greengard/Rokhlin).

We consider the conservative system

Mx′′ = −∇U(x). (3.2)

The energy of a state x at time t is

E(x(t)) =
1

2
〈x′(t),Mx′(t)〉
︸ ︷︷ ︸

kinetic

+U(x(t)).

The energy of the pendulum is for example

E(φ) =
1

2
m(φ′)2 +m

g

r0
sin(φ).

56 3 Hamiltonian Systems

Proposition 3.1.2 The energy E(x(t)) of (3.2) is conserved throughout the evolution.

Proof It holds

d

dt
E(x(t)) =

〈
x′(t),Mx′′(t)

〉
+
〈
∇U(x(t)), x′(t)

〉

=
〈
x′(t),Mx′′(t) +∇U(x(t))

〉

=
〈
x′(t), 0

〉

= 0.

�

Hamiltonian systems

Let p = Mx′; q = x; p, q ∈ R
d. Then the Hamiltonian is defined by

H(p, q) =
1

2

〈
M−1p, p

〉
+ U(q) =

1

2

〈
x′,Mx′

〉
+ U(x) = E(x).

Hamiltonian system:

q′ = Hp =
∂
∂p
H(p, q) = M−1p

p′ = −Hq = − ∂
∂q
H(p, q) = −∇U(q)

(3.3)

We assume from now on that (3.3) has a unique solution for all initial values x0 =
(
p
q

)
∈ R

2d

such that Φt : R2d → R
2d exists.

Example (pendulum):

q′ = m−1p
p′ = −m g

r0
cos q

⇔ mq′′ = −m
g

r0
cos q

Remark (3.3) can be rewritten as

y′ = −J∇H(y)

where

y =

(
p

q

)

, J =

(
0 I
−I 0

)

, ∇H(y) =

(
Hp

Hq

)

.

Notice that for J holds

J−1 = −J = JT .

Reminder (condition number of initial value problems) Let the flow Φty0 be the so-
lution of (3.3) with initial condition y0 =

(
p0
q0

)
.

1. For fixed t > 0, the pointwise condition number κ(t) is the smallest number with the
property

‖Φt(y0 +∆y0)− Φty0‖ ≤ κ(t)‖∆y0‖+ o(‖∆y0‖) ∆y0 → 0.

3.1 Energy and Symplecticity 57

2. The derivative of Φty0 w.r.t. y0 takes the form Ψ(t) := DyΦ
ty|y=y0 (Wronski matrix)

and

κ(t) ≤ ‖Ψ(t)‖.

3. Ψ solves the equation

Ψ′ = W (Φty0)Ψ

with

W (Φty0) = −J∇2H(y) = −J

(
Hpp Hpq

Hqp Hqq

)

.

Theorem 3.1.3 (Poincaré 1899) Let H(p, q) be twice continuously differentiable.
Then Ψ(t)TJΨ(t) = J holds for each t > 0 where Ψ is defined.

Proof We have

d

dt

(
ΨTJΨ

)
= Ψ′TJΨ+ΨTJΨ′

= (WΨ)TJΨ+ΨTJWΨ

= −(J∇2HΨ)TJΨ+ΨTJ(−J)∇2HΨ

= −ΨT (∇2H)T JTJ
︸︷︷︸

I

Ψ+ΨT J(−J)
︸ ︷︷ ︸

I

∇2HΨ

= −ΨT∇2HΨ+ΨT∇2HΨ

= 0.

Finally

Ψ(0) =
d

dy
Φ0y|y=y0 = I

provides

Ψ(0)TJΨ(0) = J.

�

Definition 3.1.4 A transformation Φ : R2d → R
2d satisfying (DΦ)TJ(DΦ) = J is called

symplectic.

Remark The flow Φt of a Hamiltonian system is symplectic by Theorem 3.1.3.
Conversely if y′ = f(y) is symplectic then it is locally Hamiltonian, i.e.,

∀y0 ∈ R
2d ∃H : f(y) = −∇H(y)

in a neighborhood of y0. [7, VI.2.6]

Proposition 3.1.5 Symplectic transformations are area-preserving.

58 3 Hamiltonian Systems

Proof We take d = 1 for simplicity and let

Φ

(
p

q

)

=

(
f(p, q)

g(p, q)

)

with the Jacobian DΦ =

(
fp fq
gp gq

)

.

From symplecticity

(DΦ)TJ(DΦ) =

(
0 fpgq − fqgp

−(fpgq − fqgp) 0

)

=

(
0 1
−1 0

)

,

we can conclude

detDΦ = fpgq − fqgp = 1.

For each measurable Ω ⊂ R2, we have

|Ω| =

∫

Ω
|detDΦ| ds =

∫

Φ−1Ω
ds =

∣
∣Φ−1Ω

∣
∣ .

�

Example (The pendulum and V.I. Arnold’s cats) [7, VI.2. Fig 2.2]

3.2 Symplectic Runge-Kutta-Methods

We consider the Hamiltonian system

y′ =− J∇H(y)

H(p, q) =
1

2
〈p,Mp〉+ U(q), y =

(
p

q

)

. (3.4)

As an example to illustrate the behavior of different numerical methods we consider the
pendulum

q′ = p; p′ = − g
r0

cos q; q(0) = π; p(0) = 0

and apply the explicit Euler method, the implicit Euler method and the midpoint rule.

3.2 Symplectic Runge-Kutta-Methods 59

−2 −1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

8

q

p

explicit Euler
implicit Euler
midpoint rule

Figure 3.1: Solutions of the pendulum

0 2 4 6 8 10
−2

0

2

4

6

8

10

t

q

explicit Euler
implicit Euler
midpoint rule

Figure 3.2: Solutions being subject to time

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

10

12

t

H

explicit Euler
implicit Euler
midpoint rule

Figure 3.3: Hamiltonians

We observe that the explicit Euler seems to generate energy while the implicit Euler seems
to consume energy and the midpoint rule seems to preserve energy.

Definition 3.2.1 A Runge-Kutta-method is called symplectic if its discrete flow Ψτ is sym-

60 3 Hamiltonian Systems

plectic.

Which RK-methods are symplectic?
Consider

x′ = f(x) (3.5)

and let
G(x) = xTAx+ bTx+ c

be a quadratic first integral of (3.5), i.e.,

G(x) = G(Φtx), t > 0.

Lemma 3.2.2 G is a first integral if and only if ∇G(x) · f(x) = 0 ∀x ∈ R
d.

Proof Exercise

Theorem 3.2.3 The discrete flow Ψτ of every Gauß method preserves quadratic first inte-
grals, i.e.,

G(x) = G(Ψτx) ∀x ∈ R
d.

Proof Gauß methods are RK-methods, say of stage s.
Let u be the collocation polynomial, degu = s, with

u(0) = x, u(τ) = Ψτx, u′(cjτ) = f(u(cjτ)), j = 1, . . . , s

where cjτ , j = 1, . . . , s denote the Gauß points. Then it holds

∫ 1
0 p(θ)dθ =

∑s
j=1 bjp(cj), deg p ≤ 2s− 1.

Denote q(θ) = G(u(τθ)), which is a polynomial of degree ≤ 2s. Then

G(Ψτx) = G(u(τ))

= q(1)

= q(0) +

∫ 1

0
q′(θ)dθ

= q(0) +

s∑

j=1

bjq
′(cj).

Use chain rule, collocation conditions and Lemma 3.2.2 to obtain

q′(cj) = τ∇G(u(τcj))u
′(τcj)

= τ∇G(u(τcj))f(u(τcj))

= τ · 0

= 0.

Hence,
G(Ψτx) = q(0) = G(u(0)) = G(x).

�

3.2 Symplectic Runge-Kutta-Methods 61

Corollary 3.2.4 Every Gauß method is symplectic.

Proof Consider the augmented Hamiltonian system

y′ = −J∇H(y) y(0) = y0
Ψ′ = W (y)Ψ Ψ(0) = I.

(3.6)

By Theorem 3.1.3
G(y,Ψ) = (Ψ)TJΨ = J

is a quadratic first integral of (3.6). Hence, G is preserved by any Gauß method. �

Of course we approximate y without approximating Ψ in practice.

Remark The midpoint rule is a Gauß method and therefore symplectic.

There are other symplectic RK-methods.

Proposition 3.2.5 The so-called symplectic Euler method

yn+1 = Ψτyn =

(
pn+1

qn+1

)

= yn + τ

(
−Hq(pn+1, qn)

Hp(pn+1, qn)

)

is symplectic.

Proof Exercise

Proposition 3.2.6 The trapezoidal rule Ψτx = x+ τ
2 (f(x) + f(Ψτx)) is not symplectic.

Proof Exercise

Do symplectic integrators preserve H?
No, but almost!

Theorem 3.2.7 Assume that H is analytic, Ψ is symplectic and of order p and

∃K ⊂ R
2d,Kcompact : Φty0 ∈ K ∀t ≥ 0

Then there is a τ0 > 0 such that

H(Ψnτy0) = H(y0) +O(τp)

for exponentially long time intervals nτ ≤ e
τ0
2τ .

Proof [7, IX.8.1]

Challenges

1. multibody system: equality constraints, inequality constraints

2. classical molecular dynamics: preserving adiabatic invariants over exponentially long
times

4 Iterative Methods for Linear Systems

We consider the linear system

Ax = b, A ∈ R
n×n regular, b ∈ R

n

To solve this system we already know the following direct methods [9]:

• Gaussian elimination (LR decomposition)

• QR decomposition

A = QR, Ax = b ⇒ Qy = b, Rx = y

κ(A) = κ(R), κ(Q) = 1

with κ(A) the condition number of A.

4.1 Motivation (Why Iterative Solutions?)

Numerical example:

An ∈ R
n×n, (An)ij =

1

i+ j − 1
Hilbertmatrix

κ(An) → ∞ as n → ∞ (very fast)

Observation: meaningless result of QR-algorithm for κ(A) ≫ 1

Simplified stability anlysis of direct QR solution : Due to round-off errors, we only com-
pute approximations ỹ and x̃ of y = QT b and x = R−1y. We assume that

•
‖y − ỹ‖

‖y‖
≤ eps

• x̃ = R−1ỹ

with eps denoting the machine accuracy. This means that ỹ is obtained just by rounding y
and all other round-off errors are ignored. As κ(R) = κ(A) this leads to (see [10])

‖x− x̃‖

‖x‖
≤ κ(R)

‖y − ỹ‖

‖y‖
+ o(eps) = κ(A) · eps+ o(eps).

Hence, the stability of the QR algorithm is σdirect := κ(A). This is in agreement with our
numerical experiments.

62

4.1 Motivation (Why Iterative Solutions?) 63

Iterative solution We consider an iteration function G : Rn → Rn and assume that

• ‖x−G(y)‖ ≤ ρ‖x− y‖ ∀y ∈ R
n

holds with the exact solution x of Ax = b and the convergence rate ρ < 1. Then, for any
initial iterate x0, the sequence xk, k = 0, 1, . . . , produced by the iteration xk+1 = G(xk),
k = 0, 1, . . . , satisfies

‖x− xk‖ ≤ ρk‖x− x0‖, k = 1, 2,

In particular, the sequence (xk) converges to x.

Simplified stability anlysis of iterative solution We assume that

• the convergence rate ρ is independent of κ(A).

Due to round-off errors, we only compute a perturbed evaluation of the iteration function
G̃. We assume

•
‖G(y) − G̃(y)‖

‖G(y)‖
≤ eps.

This means that G̃(y) is obtained just by rounding G(y) and all other round-off errors are
ignored. We investigate the perturbed sequence

x̃k+1 = G̃(x̃k), k = 0, 1,

Note that (xk) is bounded, because it is a convergent sequence. We assume that G is
continuous and (x̃k) is bounded. As a consequence, (G(x̃k)) is also bounded so that there is
a constant C > 0 such that

‖G(x̃k)‖ ≤ C‖x‖.

Denoting ǫk = G(x̃k)− G̃(x̃k) we then get by induction

‖x− x̃k‖ ≤ ‖x−G(x̃k−1)‖+ ‖ǫk‖

≤ ρ‖x− x̃k−1‖+ ‖ǫk‖

≤ ρ2‖x− x̃k−2‖+ ρ‖ǫk−1‖+ ‖ǫk‖

≤ ρk‖x− x0‖+
k−1∑

i=0

ρi‖ǫk−i‖

≤ ρk‖x− x0‖+ (1− ρ)−1 max
i=0,...,k−1

‖ǫk−i‖

≤ ρk‖x− x0‖+ (1− ρ)−1 max
i=0,...,k−1

‖G(x̃k−i)‖eps

≤ ρk‖x− x0‖+ (1− ρ)−1C‖x‖eps

Hence
‖x− x̃k‖

‖x‖
≤ ρk

‖x− x0‖

‖x‖
+ (1− ρ)−1Ceps,

indicating that σiterative ≪ κ(A) = σdirect, if κ(A) is large enough.

64 4 Iterative Methods for Linear Systems

Upshot Iterative schemes can have better stability properties than direct methods.

Complexity

The computational effort (complexity) of QR factorization is O(n3).
We assume that

• the convergence rate ρ is independent of n,

• the evaluation of the iteration function G has complexity O(n2).

Note that a matrix-vector multiplication has complexity O(n2). To calculate the computa-
tional effort to achieve ‖x−xk‖ ≤ tol where tol denotes the prescribed tolerance we compute
k0 such that ‖x− xk0‖ ≤ ρk0‖x− x0‖ ≤ tol:

k0 ≥
log tol

‖x−x0‖
log ρ

.

The complexity of the evaluation of xk0 is bounded by

log tol
‖x−x0‖
log ρ

n2 = O(n2) ≪ O(n3)

for large n.

Upshot For large systems, iterative schemes can be more efficient than direct methods.

Conclusion Iterative solvers can be beneficial for large, ill-conditioned systems. They are
particularly attractive, if only approximate solutions up to a prescribed tolerance are of
interest anyway. This is the case for large, ill-conditioned linear systems that typically arise
from the discretization of partial differential equations.
The complexity of the evaluation of the iteration function G together with the robustness
of the convergence rate with respect to the condition number κ(A) and the size n of the
coefficient matrix A is crucial for the quality of an iterative scheme.

Modell problem (M)

As a model problem we consider the heat equation in d space dimensions (d = 1, 2, 3). Find
u(·, ·) : Ω× [0, T] → R such that

ut =

d∑

i=1

uxixi
+ f t > 0, x ∈ Ω

where
computational domain: Ω = (0, 1)d

boundary conditions: u(x, t) = 0 x ∈ ∂Ω, t > 0
initial conditions: u(x, 0) = u0(x) x ∈ Ω.

4.1 Motivation (Why Iterative Solutions?) 65

Let f : Ω → R be independent of t. Then a stationary distribution of temperature u is
obtained if ut = 0, i.e.,

−∆u := −
d∑

i=1

uxixi
= f x ∈ Ω

u(x, 0) = 0 x ∈ ∂Ω.

This is an elliptic boundary value problem.
Discretization (d = 2):
Choose a mesh size h := 1

n+1 with n ∈ N fixed and the associated grid

Ωh :=
{
(xi, yj) ∈ Ω̄ | xi = ih; yj = jh; 0 ≤ i, j ≤ n+ 1

}

A finite difference approximation of ∆u can be obtained by setting

uxx(xi, yj) ≈
1

h2
(u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj))

∆u(xi, yj) ≈ ∆hu(xi, yj)

=
1

h2
(u(xi−1, yj) + u(xi+1, yj)− 4u(xi, yj) + u(xi, yj−1) + u(xi, yj+1))

and consequently a finite difference approximation of the PDE: Uij ≈ u(xi, yj)

−∆hUij = fij := f(xi, yj)

U0j = Un+1j = Ui0 = Uin+1 = 0

This can be written in matrix form Ax = b by line-wise ordering:

U =






U1
...
Un




 Ui =






Ui1
...

Uin




 b =






b1
...
bn




 bi = h2






fi1
...

fin






A =
1

h2









An In 0

In An
. . .

. . .
. . . In

0 In An









An =









4 −1 0

−1 4
. . .

. . .
. . . −1

0 −1 4









In =






1 0
. . .

0 1






The eigenvalues of A are

λij =
1

h2
4
(

sin2
(

i
π

2
h
)

+ sin2
(

j
π

2
h
))

i, j = 1, . . . , n.

66 4 Iterative Methods for Linear Systems

The eigenvectors of A are

(eij)lk = sin (iπlh) · sin (jπkh) i, j, k, l = 1, . . . , n.

The condition number κ(A) is

κ(A) = ‖A‖2‖A
−1‖2

= λmax(A) · (λmin(A))
−1

=
2 sin2

(
π
2 · n

n+1

)

2 sin2
(
π
2 · 1

n+1

)

≈
1

(
π
2

)2
h2

=

(
2(n + 1)

π

)2
n→∞
−→ ∞.

Remark A has a tridiagonal block structure.
A is sparse, i.e., the numbers of non-zero coefficients in each row is bounded independently
of n.

Remark For a sparse matrix A the complexity of computing Ax is O(n). Hence, we try to
achieve linear complexity for each iteration step.
Direct solvers also try to reduce the complexity by exploiting sparsity (direct sparse solvers).

4.2 Linear Iterative Schemes

We consider
Ax = b, A ∈ R

n×n regular, sparse, b ∈ R
n. (4.1)

Basic idea Replace (4.1) by a sequence of “simpler” systems

Bw = r, B ∈ R
n×n regular, r ∈ R

n (4.2)

which can be solved with complexity O(n). Examples are sparse diagonal or triangular
matrices.
This idea can be written in fixed point formulation

Bx = Bx+ b−Ax, B ∈ R
n×n arbitrary.

Fixed point iteration:

Bxk+1 = Bxk + b−Axk
︸ ︷︷ ︸

residual of xk

, B ∈ R
n×n regular

xk+1 = (I −B−1A)xk +B−1b (4.3)

= Gxk +B−1b.

B is called the preconditioner and G = I −B−1A the iteration matrix.

4.2 Linear Iterative Schemes 67

Remark

B = A ⇒ x1 = x ∀x0 ∈ R
n

However, B−1 = A−1 in (4.3) is usually difficult to compute.

Theorem 4.2.1 Assume that there are consistent norms ‖ · ‖ of Rn and R
n×n such that

‖I −B−1A‖ = ρ < 1.

Then the fixed point iteration

xk+1 = (I −B−1A)xk +B−1b

converges globally, i.e., for each initial value x0 ∈ R
n

‖x− xk+1‖ ≤ ρ‖x− xk‖

with convergence rate ρ.

Proof Apply Banach’s fixed point theorem to

T : R
n → R

n

Tx = (I −B−1A)x+B−1b.

We have to show contractivity:

‖Tx− Ty‖ = ‖(I −B−1A)(x− y)‖ ≤ ρ‖x− y‖

Hence, T has a fixed point. �

Example Decompose A = L+D +R where L is lower triangular, D is diagonal, and R is
upper triangular. By different choices of B we obtain different classical iterative methods.

1. B = I: Richardson iteration

2. B = D: Jacobi iteration

3. B = D + L: Gauß-Seidel iteration

Proposition 4.2.2 (strong row criterion) Assume that A is strongly diagonal dominant,
i.e.,

n∑

j=1
j 6=i

|aij | < |aii| ∀i = 1, . . . , n.

Then the Jacobi iteration is globally convergent.

Proof Exercise

Proposition 4.2.3 For the model problem (M) the convergence rates ρJ and ρGS of Jacobi
and Gauß-Seidel iteration, respectively, satisfy

ρ2J = ρGS < 1.

Proof We will show later (Theorem 4.4.4) that ρGS < 1. The remainder follows from [13,
Corollary 8.3.16] (weak row criterion,...). �

68 4 Iterative Methods for Linear Systems

4.3 Preconditioning and Linear Iterations

We concentrate on linear systems

Ax = b

with A ∈ R
n×n symmetric and positive definite (s.p.d.), b ∈ R

n and κ(A) = λmax(A)
λmin(A) ≫ 1.

Definition 4.3.1 A matrix B ∈ R
n×n with the properties

• B s.p.d.

• Bw = r “easily” solvable (with complexity O(n))

• κ(B−1A) ≪ κ(A)

is called preconditioner. B is called (quasi)-optimal if κ(B−1A) is independent of n.

Remark κ(B−1A) = κ(AB−1) because B(B−1A)B−1 = AB−1 is an equivalence transfor-
mation of B−1A.

Lemma 4.3.2 Let C ∈ R
n×n be s.p.d. and let 〈·, ·〉 denote the Euclidean scalar product in

R
n.

Then

〈x, y〉C := 〈Cx, y〉 x, y ∈ R
n

is a scalar product on R
n.

Lemma 4.3.3 Let A ∈ R
n×n be symmetric.

1. There is an orthonormal basis of eigenvectors ei of A, i.e.,

Aei = λiei, 〈ei, ej〉 =

{
1 i = j
0 i 6= j

.

2. Let A be s.p.d. Then there is an s.p.d. matrix A
1
2 ∈ R

n×n satisfying

A
1
2A

1
2 = A.

Proof We only show 2:
Let T := (e1, e2, . . . , en) columnwise. Then T T = T−1. Let D be diagonal with

D = T−1AT, D = diag(λ1, . . . , λn).

Since A is positive definite, λi > 0 for i = 1, . . . , n. Let

D
1
2 := diag(λ

1
2 , . . . , λ

1
2)

and define

A
1
2 := TD

1
2T−1.

4.3 Preconditioning and Linear Iterations 69

Then A
1
2 is symmetric because

〈A
1
2x, y〉 = 〈TD

1
2T−1x, y〉

= 〈D
1
2T−1x, T−1y〉

= 〈T−1x,D
1
2T−1y〉

= 〈x, TD
1
2T−1y〉

= 〈x,A
1
2 y〉.

A
1
2 is positive definite because

〈A
1
2x, x〉 = 〈D

1
2T−1x, T−1x〉 = 〈D

1
2 y, y〉 ≥ 0.

A
1
2A

1
2 = A because

A
1
2A

1
2 = TD

1
2T−1TD

1
2T−1 = TDT−1 = A.

�

Lemma 4.3.4 Let C ∈ R
n×n be s.p.d. and let A ∈ R

n×n be symmetric with respect to
〈·, ·〉C , i.e.,

〈Ax, y〉C = 〈x,Ay〉C ∀x, y ∈ R
n.

Then

λmin(A) = min
x∈Rn

x 6=0

〈Ax, x〉C
〈x, x〉C

≤ max
x∈Rn

x 6=0

〈Ax, x〉C
〈x, x〉C

= λmax(A).

The term
〈Ax, x〉C
〈x, x〉C

is called Rayleigh quotient of A with respect to 〈·, ·〉C .

Proof 1. Let C = I. Let ei denote the orthonormal eigenvectors and λi the eigenvalues
of A.
For x ∈ R

n arbitrary,

x =

n∑

i=1

xiei, xi = 〈x, ei〉

holds. Hence, if x 6= 0,

〈Ax, x〉

〈x, x〉
=

∑n
i,j=1 λixixj〈ei, ej〉
∑n

i,j=1 xixj〈ei, ej〉
=

∑n
i=1 λix

2
i

∑n
i=1 x

2
i

.

This leads to

λmin(A) ≤
〈Ax, x〉

〈x, x〉
≤ λmax(A).

Insert x = emin to obtain

〈Aemin, emin〉

〈emin, emin〉
= λmin(A)

and x = emax to conclude the proof.

70 4 Iterative Methods for Linear Systems

2. Let C ∈ R
n×n be s.p.d. and C

1
2 ∈ R

n×n s.p.d. with C
1
2C

1
2 = C according to

Lemma 4.3.3. Then

〈C
1
2AC− 1

2x, y〉 = 〈C− 1
2CAC− 1

2x, y〉

= 〈CAC− 1
2x,C− 1

2 y〉

= 〈AC− 1
2x,C− 1

2 y〉C

= 〈C− 1
2x,AC− 1

2 y〉C

= 〈C
1
2x,AC− 1

2 y〉

= 〈x,C
1
2AC− 1

2 y〉.

This means C
1
2AC− 1

2 is symmetric.
Since C

1
2AC− 1

2 is an equivalence transformation of A, we get

λ(A) = λ(C
1
2AC− 1

2).

Furthermore,

〈Ax, x〉C
〈x, x〉C

=
〈C

1
2AC− 1

2C
1
2x,C

1
2x〉

〈C
1
2x,C

1
2x〉

=
〈C

1
2AC− 1

2 y, y〉

〈y, y〉
.

Hence, 1. provides

λmin(A) = λmin(C
1
2AC− 1

2)

= min
y∈Rn

y 6=0

〈C
1
2AC− 1

2 y, y〉

〈y, y〉

= min
x∈Rn

x 6=0

〈Ax, x〉C
〈x, x〉C

.

The analogue for λmax(A) concludes the proof.

�

Corollary 4.3.5 Let B ∈ R
n×n be a preconditioner satisfying

µ0〈Bx, x〉 ≤ 〈Ax, x〉 ≤ µ1〈Bx, x〉 ∀x ∈ R
n

for some 0 ≤ µ0, µ1 ∈ R. Then κ(B−1A) ≤ µ1

µ0
.

Proof Exercise

Remark The linear iteration

Bxk+1 = Bxk + b−Axk

is equivalent to the Richardson iteration applied to the preconditioned system

B−1Ax = B−1b.

4.3 Preconditioning and Linear Iterations 71

Does a good linear iteration provide a good preconditioner?

Proposition 4.3.6 Let B ∈ R
n×n be s.p.d.. We assume that the iteration matrix

G = I −B−1A

of the associated linear iteration satisfies

‖G‖2 = ‖I −B−1A‖2 = max |λ(G)| = ρ < 1.

Then

κ(B−1A) ≤
1 + ρ

1− ρ
.

Proof G = I −B−1A is symmetric with respect to 〈·, ·〉B . Lemma 4.3.4 provides

|〈Gx, x〉B |

〈x, x〉B
≤ max |λ(G)| = ρ, ∀x ∈ R

n.

As

|〈Gx, x〉B |

〈x, x〉B
=

∣
∣〈x, x〉B − 〈B−1Ax, x〉B

∣
∣

〈x, x〉B

=

∣
∣
∣
∣
1−

〈Ax, x〉

〈Bx, x〉

∣
∣
∣
∣
,

this is equivalent to

−ρ ≤ 1−
〈Ax, x〉

〈Bx, x〉
≤ ρ.

Rearranging terms we get

(1− ρ)〈Bx, x〉 ≤ 〈Ax, x〉 ≤ (1 + ρ)〈Bx, x〉.

The assertion follows from Corollary 4.3.5. �

Does a good preconditioner provide a good linear iteration?

Proposition 4.3.7 Let B ∈ R
n×n be a preconditioner for A. Then the damped linear

iteration
Bxk+1 = Bxk + ω(b−Axk)

converges for each damping parameter ω ∈
(

0, 2
λmax(B−1A)

)

.

The optimal damping parameter is

ωopt = 2
(
λmin(B

−1A) + λmax(B
−1A)

)−1

with the associated convergence rate

ρopt =
κ(B−1A)− 1

κ(B−1A) + 1
.

72 4 Iterative Methods for Linear Systems

Proof By Lemma 4.3.4 we get

g(ω) := max
∣
∣λ(I − ωB−1A)

∣
∣

= max
x 6=0

∣
∣〈x, x〉B − ω〈B−1Ax, x〉B

∣
∣

〈x, x〉B

= max
x 6=0

∣
∣
∣
∣
1− ω

〈Ax, x〉

〈Bx, x〉

∣
∣
∣
∣

= max

{

1− ωmin
x 6=0

〈Ax, x〉

〈Bx, x〉
, ωmax

x 6=0

〈Ax, x〉

〈Bx, x〉
− 1

}

.

Arguing by Lemma 4.3.4 we get

0 < λmin(B
−1A) = min

x 6=0

〈B−1Ax, x〉B
〈x, x〉B

= min
x 6=0

〈Ax, x〉

〈Bx, x〉

0 < λmax(B
−1A) = max

x 6=0

〈B−1Ax, x〉B
〈x, x〉B

= max
x 6=0

〈Ax, x〉

〈Bx, x〉

−1

1

ωλmax(B
−1A)− 1

ωopt

g(ω)

ρopt

1− ωλmin(B
−1A)

g(ω) < 1 ⇔ ω > 0 ∧ ω <
2

λmax(B−1A)

ωopt:

ωoptλmax−1 = 1−ωoptλmin ⇒ ωopt =
2

λmin + λmax

ρopt: evaluate g(ωopt)

�

Example A = L+D +R

1. no preconditioner: B = I

2. Jacobi preconditioner: B = D

3. symmetric Gauß-Seidel preconditioner:
1 step Gauß-Seidel GGS = I − (D + L)−1(D + L+R) = −(D + L)−1R
1 step Gauß-Seidel in reversed order G−

GS = I− (D+R)−1(D+L+R) = −(D+R)−1L
Hence,

Gsym = G−
GSGGS

= (D +R)−1L(D + L)−1R

= (D +R)−1(D + L−D)(D + L)−1R

= (D +R)−1R− (D +R)−1D(D + L)−1R

= (D +R)−1R− (D +R)−1D(D + L)−1(A− (D + L))

= (D +R)−1R− (D +R)−1D(D + L)−1A+ (D +R)−1D

= I − (D +R)−1D(D + L)−1A

4.4 Linear Descent Methods 73

⇒ Bsym = (D + L)D−1(D +R).

4. Modell Problem (M): B = blockdiag(An, . . . , An)

4.4 Linear Descent Methods

We consider

Ax = b, A ∈ R
n×n s.p.d., b ∈ R

n (4.4)

Lemma 4.4.1 Problem (4.4) is equivalent to the minimization problem

x ∈ R
n : J(x) ≤ J(y) ∀y ∈ R

n,

where J(v) = 1
2〈Av, v〉 − 〈b, v〉.

Proof Gradient: J ′(v)(w) = 〈Av,w〉 − 〈b, w〉

J ′(v) = 0 ⇔ 〈Av − b, w〉 = 0 ∀w ∈ R
n

⇔ Av − b = 0

Hence,

Ax = b ⇔ x is local extremum of J.

Hessian matrix: J ′′(v) = A

A positive definite ⇔ local minimum in x.

�

Basic idea of descent methods for linear systems:
Approximate x by minimization of J in the direction of certain descent directions ei, i =
1, . . . , n.

For given descent directions ei 6= 0, i = 1, . . . , n, and given iterate xk we consider the
following two algorithms:

Algorithm 1 Parallel directional correction (PDC)

for i = 1, . . . , n do
solve

αi ∈ R : J(xk + αiei) ≤ J(xk + αei) ∀α ∈ R

end for
new iterate: xk+1 = xk +

∑n
i=1 αiei

Remark 1. SDC implies J(vk) ≤ J(vk−1) ∀k

2. PDC does not imply the above but it is easier to parallelize.

74 4 Iterative Methods for Linear Systems

Algorithm 2 Successive directional correction (SDC)

initialize w0 := xk

for i = 1, . . . , n do
solve

αi ∈ R : J(wi−1 + αiei) ≤ J(wi−1 + αei) ∀α ∈ R

update: wi := wi−1 + αiei
end for
new iterate: xk+1 = wn

3. The solution of the local 1D-minimization problem

α0 ∈ R : J(w + α0e) ≤ J(w + αe) ∀α ∈ R

is available in closed form as α0 =
〈b−Aw,e〉
〈Ae,e〉 .

Proof of 3:

g(α) := J(w + αe)

=
1

2
〈A(w + αe), w + αe〉 − 〈b, w + αe〉

=
1

2
α2〈Ae, e〉 +

1

2
α〈Aw, e〉 +

1

2
α〈Ae,w〉 +

1

2
〈Aw,w〉 − 〈b, w〉 − α〈b, e〉

=
1

2
α2〈Ae, e〉 + α〈Aw, e〉 − α〈b, e〉 + 〈

1

2
Aw − b, w〉

g′(α) = α〈Ae, e〉 + 〈Aw, e〉 − 〈b, e〉

g′(α0) = 0 ⇔ α0 =
〈b−Aw, e〉

〈Ae, e〉

g′′(α) = 〈Ae, e〉 > 0

�

Proposition 4.4.2 Assume that the ei are linearly independent. Then the PDC and SDC
methods are linear iterations.

Proof We only consider PDC methods. Note that

〈b−Aw, ei〉 = eTi (b−Aw).

Hence,

xk+1 = xk +

n∑

i=1

αiei

= xk +

n∑

i=1

1

〈Aei, ei〉
(eie

T
i)(b−Aw)

= xk + C(b−Aw)

4.4 Linear Descent Methods 75

with C =
∑n

i=1
1

〈Aei,ei〉(eie
T
i). We show that C is invertible.

Assume

0 = Cv =

n∑

i=1

1

〈Aei, ei〉
ei(e

T
i v) =

n∑

i=1

eTi v

〈Aei, ei〉
ei

ei lin. indep. ⇒ eTi v = 0 ∀i = 1, . . . , n

⇒ 〈v,w〉 = 0 ∀w ∈ R
n

⇒ v = 0

Hence, PDC is a linear iteration with B = C−1. �

Proposition 4.4.3 Let ei denote the Cartesian unit vectors. Then the resulting PDC and
SDC methods are equivalent to the Jacobi method and the Gauß-Seidel method, respectively.

Proof Exercise

Theorem 4.4.4 The Gauß-Seidel iteration converges globally for all s.p.d. matrices A.

Proof Let x0 ∈ R
n and let xk+1 = Mxk describe one Gauß-Seidel step.

Recall

J(xk) ≤ J(x0)

for all k ≥ 0.

1. To show:

∃C > 0 : ‖xk‖ ≤ C ∀k ∈ N

J(x0) ≥ J(xk)

=
1

2
〈Axk, xk〉 − 〈b, xk〉

≥ c‖xk‖22 − ‖b‖‖xk‖

=: g(‖xk‖)

g is a parabola and g(‖xk‖) is bounded by J(x0). Hence, the arguments ‖xk‖
must also be bounded.

2. There exists an x∗ ∈ R
n, and a subsequence

(
xkj
)

j∈N: xkj → x∗ for j → ∞

(Heine-Borel).

3. M : Rn → R
n is continuous. This follows directly from Proposition 4.4.2.

4. Next we show that J(x∗) = J(Mx∗). For this note that

J(xkj+1) ≤ J(xkj+1) = J(Mxkj) ≤ J(xkj).

Let j → ∞ and use continuity of J and M to obtain

J(x∗) ≤ J(Mx∗) ≤ J(x∗).

76 4 Iterative Methods for Linear Systems

5. To show: Ax = b ⇔ x∗ = x

J(x∗) = J(Mx∗) ⇒ 0 = αi =
〈b−Ax∗, ei〉
〈Aei, ei〉

i = 1, . . . , n

⇒ b−Ax∗ = 0

6. To show: xk → x
As x is the unique solution each convergent subsequence must converge to x.

�

Remark The Gauß-Seidel method is linearly convergent [6].

How can “better” directions ei be constructed? A hint comes from the following result.

Proposition 4.4.5 Assume that the search directions ei are A-orthogonal, i.e.,

〈Aei, ej〉 = 0, i 6= j.

Then the corresponding PDC and SDC methods provide the exact solution in one step.

Proof (only for PDC method)
Let x0 ∈ R

n,

x0 =
n∑

j=1

x0jej ,

and

x =

n∑

j=1

xjej

be the exact solution. Then

αi =
〈b−Ax0, ei〉

〈Aei, ei〉

=
〈A(x − x0), ei〉

〈Aei, ei〉

=
n∑

j=1

(xj − x0j)
〈Aej , ei〉

〈Aei, ei〉

= xi − x0i .

Hence,

x1 = x0 +

n∑

i=1

αiei = x0 +

n∑

i=1

(xi − x0i)ei =

n∑

i=1

xiei = x.

�

Remark The eigenvectors e∗i of A are A-orthogonal

〈Ae∗i , e
∗
j 〉 = λi〈e

∗
i , e

∗
j 〉 = 0 i 6= j.

This leads us to the basic idea of multigrid methods:
Select search directions ei such that ei ≈ e∗i .
How? See Numerics III.

4.5 Nonlinear Descent Methods 77

4.5 Nonlinear Descent Methods

We consider
Ax∗ = b, A ∈ R

n×n s.p.d., b ∈ R
n.

Then
J(x∗) ≤ J(x) ∀x ∈ R

n

Remark J(x) = 1
2〈Ax, x〉 − 〈b, x〉 is called energy.

〈x, y〉A = 〈Ax, y〉 is the energy scalar product,
‖x‖A =

√

〈x, x〉
A
is the energy norm.

Basic idea of nonlinear descent methods:
Select a new descent direction in each iteration step.

4.5.1 Gradient Methods (Steepest Descent)

The direction of steepest descent of J at x is

−∇J(x) = b−Ax (residual of x).

The directional derivative of J at x in the direction n, ‖n‖ = 1, is

∂

∂n
J(x) = 〈∇J(x), n〉

≥ −‖∇J(x)‖ · ‖n‖ (Cauchy-Schwarz inequality)

= 〈∇J(x),−
∇J(x)

‖∇J(x)‖
〉

Algorithm 3 Gradient method (analytic formulation)

1: given iterate xk ∈ R
n, residual rk = b−Axk

2: optimal reduction of energy in steepest descent direction

αk ∈ R : J(xk + αkrk) ≤ J(xk + αrk) ∀α ∈ R

3: new iterate xk+1 = xk + αkrk

Remark

αk =
〈rk, rk〉

〈Ark, rk〉

Proof

g(α) = J(xk + αrk)

g′(α) = 〈∇J(xk + αrk), rk〉 = 〈A(xk + αrk)− b, rk〉 = 〈−rk + αArk, rk〉 = 0

⇔ α =
〈rk, rk〉

〈Ark, rk〉

�

78 4 Iterative Methods for Linear Systems

Remark Reduction of the energy is equivalent to reduction of the error, i.e.,

αk ∈ R : ‖x∗ − xk+1‖A = ‖x∗ − (xk + αkrk)‖A ≤ ‖x∗ − (xk + αrk)‖A ∀α ∈ R

Proof

‖x∗ − x‖2A = 〈x∗ − x, x∗ − x〉A

= 〈x, x〉A − 2〈x∗, x〉A + 〈x∗, x∗〉A
= 〈Ax, x〉 − 2〈b, x〉+ 〈b, x∗〉

= 2J(x) + 〈b, x∗〉

Hence,

‖x∗ − xk+1‖2A = 2J(xk+1) + 〈b, x∗〉

≤ 2J(xk + αrk) + 〈b, x∗〉

= ‖x∗ − (xk + αrk)‖A ∀α ∈ R.

�

Algorithm 4 Gradient method (algorithmic formulation)

1: given iterate xk ∈ R
n, residual rk = b−Axk

2: optimal reduction factor:

αk =
〈rk, rk〉

〈Ark, rk〉

3: new iterate xk+1 = xk + αkrk
4: stopping criterion

if ‖x∗ − xk+1‖A ≤ tol then
stop

else
k := k + 1 and continue with step 1

end if

Remark The computational effort consists of two matrix-vector multiplications and two
scalar products.

Proposition 4.5.1 (Convergence rates) Let A be s.p.d. with eigenvalues 0 < λ1 ≤ . . . ≤
λn. Let x0 ∈ R

n and let x1, . . . , xk be computed by the gradient method. Then

‖x∗ − xk+1‖A ≤
(
1− κ(A)−2

) 1
2 ‖x∗ − xk‖A,

where κ(A) = λn

λ1
denotes the condition number of A.

Proof 1. Diagonalization of A:

A = QDQT , Q−1 = QT , D = diag(λ1, . . . , λn), A
1
2 = QD

1
2QT

4.5 Nonlinear Descent Methods 79

2. Minimization property of the Rayleigh quotient: λ1 ≤
〈Ax,x〉B
〈x,x〉B ≤ λn

〈rk, x
∗ − xk〉A = 〈Ark, x

∗ − xk〉

= 〈rk, A(x
∗ − xk)〉

= 〈b−Axk, A(x∗ − xk)〉

= 〈A(x∗ − xk), A(x∗ − xk)〉

= 〈AA
1
2 (x∗ − xk), A

1
2 (x∗ − xk)〉

≥ λ1〈A
1
2 (x∗ − xk), A

1
2 (x∗ − xk)〉

= λ1‖x
∗ − xk‖2A

‖rk‖
2
A = 〈Ark, rk〉

= 〈AA(x∗ − xk), A(x∗ − xk)〉

= 〈A2A
1
2 (x∗ − xk), A

1
2 (x∗ − xk)〉

≤ λ2
n‖x

∗ − xk‖2A

3. Upper bound for the convergence rate: Set α := λ1
λ2
n

‖x∗ − (xk + αkrk)‖
2
A ≤ ‖x∗ − (xk + αrk)‖

2
A

= ‖x∗ − xk‖2A − 2α〈rk, x
∗ − xk〉+ α2‖rk‖

2
A

≤ ‖x∗ − xk‖2A − 2αλ1‖x
∗ − xk‖2A + α2λ2

n‖x
∗ − xk‖2A

=

(

1− 2
λ2
1

λ2
n

+
λ2
1

λ2
n

)

‖x∗ − xk‖2A

=
(
1− κ(A)−2

)
‖x∗ − xk‖2A

�

Remark

(
1− κ(A)−2

) 1
2 ≥

κ(A) − 1

κ(A) + 1

Example

n = 2, A =

(
λ1 0
0 λ2

)

, b = 0

We consider level sets of J(x) = 1
2(λ1x

2
1 + λ2x

2
2).

λ2 >> λ1

λ1 = λ2

80 4 Iterative Methods for Linear Systems

slow convergence for λ1 ≪ λ2, i.e., κ(A) ≫ 1

4.5.2 Conjugate Gradient Methods (CG Methods)

Lemma 4.5.2 Let xk+1 = xk + αkrk, rk = b−Axk, αk ∈ R. Then

xk+1 ∈ x0 + Vk, Vk = span{r0, Ar0, . . . , A
kr0}

Vk is called a Krylov space.

Proof Note that V1 ⊂ V2 ⊂ . . . ⊂ Vk, AVk−1 ⊂ Vk.
Induction over k:

1. k = 0:

x1 = x0 + α0r0 ∈ x0 + V0, V0 = span{r0}

2. Let k > 0 and xk ∈ x0 + vk−1, vk−1 ∈ Vk−1 = span{r0, . . . , A
k−1r0}. Then

xk+1 = xk + αkrk

= xk + αk(b−Axk)

= x0 + vk−1 + αk(b−A(x0 + vk−1))

= x0 + vk−1
︸︷︷︸

∈Vk−1

+αkr0
︸︷︷︸

∈V0

−αkAvk−1
︸ ︷︷ ︸

∈Vk

= x0 + vk, vk ∈ Vk.

�

Algorithm 5 Conjugate gradient iteration (analytic version)

1: given iterate xk ∈ R
n

2: compute xk+1 ∈ x0 + Vk such that

‖x∗ − xk+1‖A ≤ ‖x∗ − x‖A ∀x ∈ x0 + Vk

How do we compute xk+1 cheaply?

Reminder (Best approximation) [9, Sec.2] Let H be a Hilbert space, Vk ⊂ H finite
dimensional.
Minimization: For given f ∈ H find vk ∈ Vk such that

‖f − vk‖ ≤ ‖f − v‖ ∀v ∈ Vk

Equivalent variational formulation:

〈vk, v〉 = 〈f, v〉 ∀v ∈ Vk

4.5 Nonlinear Descent Methods 81

f − vk

H

f

vk Vk

Figure 4.1: Galerkin orthogonality

Orthogonal basis e0, . . . , ek−1 ∈ Vk, i.e.,

vk =

k−1∑

i=0

〈f, ei〉

‖ei‖2
ei.

Let w0, . . . , wk−1 be a basis of Vk. We get an orthogonal basis e0, . . . , ek−1 by Gram-Schmidt
orthogonalization:

e0 = w0

ej+1 = wj+1 −

j
∑

i=0

βiei, βi =
〈wj+1, ei〉

〈ei, ei〉

Application to CG Let H = R
n with the energy scalar product 〈x, x〉A = 〈Ax, x〉, let

Vk = span{r0, . . . , A
kr0} denote the kth Krylov space, and let f := x∗ − x0. Then for each

k > 0, the minimization takes the form

vk ∈ Vk : ‖x∗ − (x0 + vk)‖A ≤ ‖x∗ − (x0 + v)‖A ∀v ∈ Vk

or, equivalently,

vk ∈ Vk : 〈vk, v〉A = 〈x∗ − x0, v〉A = 〈r0, v〉 ∀v ∈ Vk. (4.5)

Let e0, . . . , ek be an orthogonal basis of (Rk+1, 〈·, ·〉A). Then

vk =

k∑

i=0

〈x∗ − x0, ei〉A
〈ei, ei〉A

ei =

k∑

i=0

〈r0, ei〉

〈Aei, ei〉
ei

How do we get ei?
Let us first exploit the Galerkin orthogonality (4.5).

Lemma 4.5.3 For given x0 ∈ R
n let x1, . . . , xk+1 be computed by the CG-method, and let

rk+1 6= 0.
Then

(i) 〈rk+1, v〉 = 0 ∀v ∈ Vk

82 4 Iterative Methods for Linear Systems

(ii) Vk = span{r0, . . . , rk}

Proof (i) Rewriting (4.5) we get

0 = 〈x∗ − (x0 + vk), v〉A

= 〈x∗ − xk+1, v〉A

= 〈b−Axk+1, v〉

= 〈rk+1, v〉 ∀v ∈ Vk

(ii) r0, . . . , rk are linearly independent as a consequence of (i) (〈ri, rj〉 = 0 ∀i > j)
and rk+1 6= 0 ⇒ ri 6= 0 i ≤ k + 1, because Vi ⊂ Vk.
Hence, it is sufficient to show

ri ∈ Vk, i = 0, . . . , k.

Let
xi = x0 + vi−1, vi−1 ∈ Vi−1, i = 0, . . . , k.

Then

ri = b−Axi

= b−A(x0 + vi−1)

= r0 −Avi−1 ∈ Vi ⊂ Vk.

�

As a consequence we can inductively construct an A-orthogonal basis of Vk+1 by orthogo-
nalizing r0, . . . , rk+1.

Lemma 4.5.4 Let e0 := r0 and inductively

ek+1 := rk+1 − βkek, βk =
〈Ark+1, ek〉

〈Aek, ek〉
, k ≥ 0

Then e0, . . . , ek+1 is an A-orthogonal basis of Vk+1.

Proof Let e0, . . . , ek be an A-orthogonal basis of Vk. Let ẽk+1 be computed by Gram-
Schmidt orthogonalization, i.e.,

ẽk+1 = rk+1 −
k∑

i=0

βiei, βi =
〈Ark+1, ei〉

〈Aei, ei〉
.

For i = 0, . . . , k − 1,
βi = 〈Ark+1, ei〉 = 〈rk+1, Aei

︸︷︷︸

∈Vk

〉 = 0.

Hence,
ẽk+1 = rk+1 − βkek = ek+1.

�

4.5 Nonlinear Descent Methods 83

Algorithm 6 CG method

initialize
r0 = b−Ax0 e0 = r0, k = 0

if rk 6= 0 then
compute

xk+1 = xk + αkek, αk =
〈r0, ek〉

〈Aek, ek〉

rk+1 = b−Axk+1

ek+1 = rk+1 − βkek, βk =
〈Ark+1, ek〉

〈Aek, ek〉

end if

Theorem 4.5.5 For given x0 ∈ R
n the iterates xk of the CG-method can be computed

inductively as given by algorithm 6.

Proof By Lemma 4.5.4 e0, . . . , ek is an A-orthogonal basis of Vk. Hence, the solution of
(4.5) is

vk−1 =

k−1∑

i=0

αiei

and
vk = vk−1 + αkek.

Hence,
xk+1 = x0 + vk = x0 + vk−1 + αkek = xk + αkek.

The construction of ek+1 follows from Lemma 4.5.4. �

Remark One iteration step of algorithm 6 requires

• 3 multiplications with A,

• 3 scalar products,

• storage of r0.

Lemma 4.5.6

αk =
〈rk, rk〉

〈Aek, ek〉

rk+1 = rk − αkAek

βk = −
〈rk+1, rk+1〉

〈rk, rk〉

Proof [6]

84 4 Iterative Methods for Linear Systems

Remark If the algorithm is reformulated using Lemma 4.5.6, one iteration step requires

• 1 multiplication with A,

• 3 scalar products.

Remark It is guaranteed that xn = x∗. However we hope for ‖x∗ − xk‖ ≤ tol for k ≪ n.

Theorem 4.5.7 The CG method satisfies the error estimate

‖x∗ − xk‖A ≤ 2

(√

κ(A) − 1
√

κ(A) + 1

)k

‖x∗ − x0‖A.

Proof [6]

Remark By Theorem 4.5.7 the average convergence rate is

ρ(A) =

√

κ(A)− 1
√

κ(A) + 1
≪

κ(A)− 1

κ(A) + 1
,

i.e., the CG method is much faster than the gradient method. However, we still have

ρ(A) → 1 for κ(A) → ∞.

The remedy is

1. Find a good preconditioner B.

2. Apply CG to the preconditioned system

ABxB = b, AB = AB−1, xB = Bx.

Remark AB is symmetric with respect to 〈·, ·〉B−1 .

Replace

A → AB = AB−1

〈·, ·〉 → 〈·, ·〉B−1

xk → xkB = Bxk

in the CG algorithm to obtain the preconditioned CG method (PCG).

Remark In addition to the matrix-vector operations needed by the CG method, each step
of the PCG method requires requires 2 evaluations of B−1.

Corollary 4.5.8 The PCG method satisfies the error estimate

‖x∗ − xk‖A ≤ 2

(√

κ(AB)− 1
√

κ(AB) + 1

)k

‖x∗ − x0‖A.

4.5 Nonlinear Descent Methods 85

Algorithm 7 Preconditioned CG method (PCG)

1: initialization for given x0 ∈ R
n:

r0 = b−AB−1x0 e0 = r0

2: minimization on Vk

αk =
〈B−1rk, rk〉

〈AB−1ek, B−1rk〉
, xk+1 = xk + αkB

−1ek

3: stopping criterion: if ‖x∗ − xk+1‖A ≤ tol then stop
4: orthogonalization

rk+1 = rk − αkAB
−1ek

βk = −
〈B−1rk+1, rk+1〉

〈B−1rk, rk〉

B−1ek+1 = B−1rk+1 − βkB
−1ek

5: goto 2

Proof

‖x∗B − xkB‖
2
B−1AB−1 = 〈B−1AB−1(Bx∗ −Bxk), (Bx∗ −Bxk)〉

= 〈A(x∗ − xk), x∗ − xk〉

= ‖x∗ − xk‖2A

The rest follows from the theorem. �

Remark Each linear iteration can be used as a preconditioner.
The construction of preconditioners is a very active field. Optimal preconditioners are based
on structural properties of the underlying partial differential equation (inheritance principle).
This is analysis rather than linear algebra.

A posteriori estimate for the iterative error ‖x∗ − xk‖A

Lemma 4.5.9 Let A, B be s.p.d. and µ0, µ1 ∈ R. The following estimates are equivalent

(i) µ0〈Ax, x〉 ≤ 〈AB−1Ax, x〉 ≤ µ1〈Ax, x〉

(ii) µ0〈Bx, x〉 ≤ 〈Ax, x〉 ≤ µ1〈Bx, x〉.

Each of the estimates implies

κ(AB−1) = κ(B−1A) ≤
µ1

µ0
. (4.6)

86 4 Iterative Methods for Linear Systems

Proof 1. (i)⇒(4.6):

〈B−1Ax, y〉A = 〈AB−1Ax, y〉 = 〈Ax,B−1Ay〉

B−1A is symmetric with respect to 〈·, ·〉A.
Rayleigh quotient:

λmin(B
−1A) = min

x 6=0

〈B−1Ax, x〉A
〈x, x〉A

= min
x 6=0

〈AB−1Ax, x〉

〈Ax, x〉
≥ µ0

λmax(B
−1A) = max

x 6=0

〈B−1Ax, x〉A
〈x, x〉A

= max
x 6=0

〈AB−1Ax, x〉

〈Ax, x〉
≤ µ1

Hence,

κ(B−1A) =
λmin(B

−1A)

λmax(B−1A)
≤

µ1

µ0

κ(B−1A) = κ(B−1(AB−1)B) = κ(AB−1).

2. (i)⇒(ii):

(i) ⇒ (λmin(B
−1A))−1 ≤ µ−1

0

(λmin(B
−1A))−1 = λmax((B

−1A)−1) = λmax(A
−1B)

A−1B symmetric with respect to 〈·, ·〉A. Hence,

µ−1
0 ≥ λmax(A

−1B) = max
x 6=0

〈A−1Bx, x〉A
〈x, x〉A

= max
x 6=0

〈Bx, x〉

〈Ax, x〉

⇒ 〈Ax, x〉 ≥ µ0〈Bx, x〉

analogously

µ−1
1 ≤ (λmax(B

−1A))−1 = λmin((B
−1A)−1) = λmin(A

−1B) = min
x 6=0

〈Bx, x〉

〈Ax, x〉

⇒ 〈Ax, x〉 ≤ µ1〈Bx, x〉

3. (ii)⇒(i): B−1A is symmetric with respect to 〈·, ·〉B

µ1 ≥ max
x 6=0

〈Ax, x〉

〈Bx, x〉
= max

x 6=0

〈B−1Ax, x〉B
〈x, x〉B

= λmax(B
−1A)

= max
x 6=0

〈B−1Ax, x〉A
〈x, x〉A

= max
x 6=0

〈AB−1Ax, x〉

〈Ax, x〉

⇒ 〈AB−1Ax, x〉 ≤ µ1〈Ax, x〉

analogously

µ0〈Ax, x〉 ≤ 〈AB−1Ax, x〉

�

4.5 Nonlinear Descent Methods 87

Theorem 4.5.10 Assume that the preconditioner satisfies

µ0〈Ax, x〉 ≤ 〈AB−1Ax, x〉 ≤ µ1〈Ax, x〉 ∀x ∈ R
n,

and let

Bd = rk.

Then

µ−1
1 ‖d‖2B ≤ ‖x∗ − xk‖2A ≤ µ−1

0 ‖d‖2B .

Proof

‖d‖2B = 〈Bd, d〉 = 〈rk, B
−1rk〉 = 〈B−1rk, rk〉 = 〈AB−1A(x∗ − xk), x∗ − xk〉

Then Lemma 4.5.9 implies for x := x∗ − xk

µ0〈Ax, x〉 ≤ ‖d‖2B ≤ µ1〈Ax, x〉.

�

Remark d = B−1rk is computed in step 2 of PCG. This means we get an error estimate
for free.
Only good preconditioners give good error estimates.

4.5.3 Generalized minimal residual method (GMRes)

Let A ∈ R
n×n be regular but not s.p.d.. Then the solution of Ax∗ = b is not equivalent to

the minimization of J(x) = 1
2〈Ax, x〉 − 〈b, x〉 as we can observe in the following example.

Example

A =

(
1 0

−10 1

)

, b = 0 ⇒ x∗ = 0, J(x∗) = 0

but

J(x) =
1

2
(x21 + x2(−10x1 + x2))

J

((
1

1

))

=
1

2
(2− 10) = −4 < J(x∗)

One way out of this problem is by replacing J with another functional:
Let B ∈ R

n×n be s.p.d. Then the solution of Ax∗ = b minimizes

‖b−Ax‖2B ∀x ∈ R
n.

This leads us to the following generalization of CG:

Example Let A be s.p.d.. Choose B = A−1. Then Algorithm 8 is the CG method.

88 4 Iterative Methods for Linear Systems

Algorithm 8 Minimal residual method

choose x0 ∈ R
n, r0 = b−Ax0

for k = 0, 1, . . . do
Krylov space: Vk = span{r0, . . . , A

kr0}
solve

xk+1 ∈ x0 + Vk : ‖b−Axk+1‖2B ≤ ‖b−Ax‖2B ∀x ∈ x0 + Vk

end for

Proof

‖b−Ax‖2A−1 = 〈A−1A(x∗ − x), A(x∗ − x)〉 = ‖x∗ − x‖2A

�

Definition 4.5.11 Algorithm 8 with B = I is called generalized minimal residual method
(GMRes).

Lemma 4.5.12 If Vk = Vk+1, then xk+1 = x∗.

Proof From AVk ⊂ Vk+1 = Vk follows that Vk ∋ x 7→ Ax ∈ Vk is a linear injective mapping.
Since Vk is finite dimensional the mapping is also surjective. Therefore,

∃w∗ ∈ Vk : Aw∗ = r0 = b−Ax0

⇒ 0 ≤ ‖b−Axk+1‖ ≤ ‖b−A(x0 + w∗)‖ = ‖b−A(x0)− b+A(x0)‖ = 0

⇔ xk+1 = x∗.

�

Corollary 4.5.13 GMRes terminates after k0 ≤ n iteration steps.

How can we compute xk+1 cheaply?
The minimization

xk+1 ∈ x0 + Vk : ‖b−Axk+1‖ ≤ ‖b−Ax‖ ∀x ∈ x0 + Vk (4.7)

is equivalent to the minimization

vk ∈ Vk : ‖r0 −Avk‖ ≤ ‖r0 −Av‖ ∀v ∈ Vk, (4.8)

and xk+1 = x0 + vk. This is a least square problem. Therefore, we obtain the following
solution [9]: Let Ak = A|Vk

and QkRk be a decomposition of Ak with

Ak = QkRk, Q−1
k = QT

k , Rk upper triangular, vk = R−1
k QT

k r0.

Our task is to compute Ak, Qk, and Rk as cheaply as possible.

4.5 Nonlinear Descent Methods 89

1. step Inductive construction of an orthonormal basis e0, . . . , ek, i.e., 〈ei, ej〉 = δij by
Gram-Schmidt orthogonalization (which in this case is often called Arnoldi method):

ẽj+1 = Aej −

j
∑

i=0

〈Aej , ei〉
︸ ︷︷ ︸

:=hij

ei, j = 0, . . . , k

ej+1 =
ẽj+1

‖ẽj+1‖

provides
Hk = (hij) ∈ R

k0×k0 , k0 = k + 1.

Observation:

Hk =








∗ ∗ . . . ∗
∗ ∗ ∗

. . .
. . .

...
0 ∗ ∗








, hk+1,k = ‖ẽk+1‖

is a Hessenberg-matrix.

2. step Reformulation of (4.8) as

y ∈ R
k0 : ‖βe0 − H̄ky‖ ≤ ‖βe0 − H̄kỹ‖ ∀ỹ ∈ R

k0 , (4.9)

where

‖b−Ax‖ = ‖βe0 − H̄ky‖ for x = x0 +
k∑

i=0

yiei,

β = ‖r0‖, H̄k =

(
Hk

0 . . . 0 hk+1,1

)

=











∗ ∗ . . . ∗
∗ ∗ . . . ∗

∗
...

. . . ∗
0 ∗











∈ R
(k0+1)×k0 .

3. step QR-decomposition of H̄k

Elimination of k + 1 sub-“diagonal” elements by Givens rotation [9]:

Gk0+1,k0 · · ·G32G21H̄k =










∗ ∗ . . . ∗
∗ . . . ∗

. . .
...

0 ∗
0 0 . . . 0










=: R̄k =

(
Rk

0

)

Remark: Each step is cheaper than the preceding one.

H̄k+1 =








∗

H̄k

...
∗

0 . . . 0 ∗








∈ R
(k0+2)×(k0+1)

90 4 Iterative Methods for Linear Systems

- application of Gk0+1,k0 · · ·G32G21 to last column

- elimination of ∗

4. step Solution of (4.9)

‖b−Ax‖ = ‖βe0 − H̄ky‖ = ‖z̄k − R̄ky‖

z̄k = Gk0+1,k0 · · ·G21(βe1)

= Gk0+1,k0

(
z̄k
0

)

=

(
zk
ζk

)

min
y∈Rk0

‖z̄k − R̄ky‖
2 = min

yk∈Rk0

‖zk −Rky‖
2 + |ζk|

2

= |ζk|
2 for yk = R−1

k zk

5. step

xk+1 = x0 +

k∑

i=0

yk,iei

only necessary if ‖b−Axk+1‖ = |ζk| ≤ tol

An algorithmic version of GMRes can be found on the web (Wikipedia) or in literature, for
example [8, p. 232].
GMRes requires the storage of e0, . . . , ek. Since this might be to much, the restart of GMRes
after m steps is motivated.

Algorithm 9 GMRes(m)

initial iterate x0

for k = 0, 1, . . . do
y0 = xk

for i = 0, . . . ,m− 1 do
compute yi+1 from yi by GMRes
if ‖x∗ − yi+1‖ ≤ tol then
stop

end if
end for
xk+1 = ym

end for

Remark In general, GMRes(m) does not terminate after a finite number of steps. Hence,
we have to investigate the convergence of GMRes(m).

Lemma 4.5.14 Let A be positive definite, i.e.,

〈Ax, x〉 > 0 ∀x ∈ R
n, x 6= 0.

4.5 Nonlinear Descent Methods 91

Let xk, k ≥ 1, be computed by GMRes from x0 6= x∗. Then

‖rk‖ ≤

(

1−
µ2

σ2

) 1
2

‖r0‖,

where
rk = b−Axk, r0 = b−Ax0

and

µ = λmin

(
1

2
(A+AT)

)

> 0, σ = ‖A‖2.

Proof We have
x0 + αr0 ∈ x0 + Vk−1 ∀α ∈ R.

Set α = 〈r0,Ar0〉
‖Ar0‖2 . Then

‖rk‖2 = min
x∈x0+Vk−1

‖b−Ax‖2

≤ ‖b−A(x0 + αr0)‖
2

= ‖r0 − αAr0‖
2

= ‖r0‖
2 − 2α〈r0, Ar0〉+ α2‖Ar0‖

2

= ‖r0‖
2 −

〈r0, Ar0〉
2

‖Ar0‖2

〈r0, Ar0〉 =
1

2

(
〈AT r0, r0〉+ 〈r0, Ar0〉

)

= 〈r0,
1

2
(A+AT)r0〉

=
〈r0,

1
2(A+AT)r0〉

〈r0, r0〉
〈r0, r0〉

≥ λmin

(
1

2
(A+AT)

)

‖r0‖
2

= µ‖r0‖
2 ≥ 0

‖Ar0‖ ≤ ‖A‖‖r0‖

= σ‖r0‖

‖rk‖
2 ≤ ‖r0‖

2 −
〈r0, Ar0〉

2

‖Ar0‖2

≤ ‖r0‖
2 −

µ2‖r0‖
4

σ2‖r0‖2

=

(

1−
µ2

σ2

)

‖r0‖
2.

�

Remark AS := 1
2(A+AT) is symmetric for all A ∈ R

n×n. AS is called the symmetric part
of A and AA := 1

2(A−AT) is the antisymmetric part.

92 4 Iterative Methods for Linear Systems

Theorem 4.5.15 (Elman 1992) Assume that 1
2(A+AT) is s.p.d. Then GMRes(m) con-

verges for any m ≥ 1.

Proof Lemma 4.5.14 implies

‖rm‖ ≤ ρ‖r0‖ ρ =

(

1−
µ2

σ2

)1
2

< 1

By induction we get
‖rjm‖ ≤ ρj‖r0‖ → 0 for j → ∞.

Therefore,
‖x∗ − xk‖ = ‖A−1rk‖ ≤ ‖A−1‖‖rk‖ → 0.

Hence,

‖x∗ − xk‖ ≤ tol if ‖rk‖ ≤
1

‖A−1‖
tol.

�

Remark If A is s.p.d., then µ = λmin(A) and σ = λmax(A). Hence,

ρ = (1− κ(A)−2)
1
2 .

Thus, the convergence deteriorates with κ(A) → ∞ (similar to steepest descent).
Way out: preconditioning: replace Ax∗ = b by

(AB−1)Bx∗ = b left
(AB−1)x∗ = B−1b right

where B ≈ A in the sense that

κ(B−1A) = κ(AB−1) ≪ κ(A)

and the solution of By = w can be obtained by one matrix-vector-multiplication.

Bibliography

[1] G. Bader and P. Deuflhard. A Semi-Implicit Mid-Point Rule for Stiff Systems of Ordi-
nary Differential Equations. Numer. Math. 41, pp. 373-398, 1983.

[2] F. Bornemann. An Adaptive Multilevel Approach for Parabolic Equations in Two Space
Dimensions. Dissertation, Freie Universität Berlin; published as TR 91-07, Konrad-
Zuse-Zentrum Berlin, 1991.

[3] P. Deuflhard. Newton Methods for Nonlinear Problems. Springer, 2004.

[4] P. Deuflhard and F. Bornemann. Scientific Computing with Ordinary Differential Equa-
tions. Springer, 2002.

[5] P. Deuflhard, E. Hairer, and J. Zugck. One-Step and Extrapolation Methods for
Differential-Algebraic Systems. Numer. Math. 51, pp. 501-516, 1987.

[6] P. Deuflhard and A. Hohmann. Numerische Mathematik I - Eine algorithmisch orien-
tierte Einführung. Walter de Gruyter, 2002.

[7] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration. Structure-
Preserving Algorithms for Ordinary Differential Equations. Springer, 1991.

[8] C. Kanzow. Numerik linearer Gleichungssysteme. Direkte und iterative Verfahren.
Springer, 2004.

[9] R. Kornhuber and C. Schütte. Einführung in die Numerische Mathematik - Lecture
notes Numerik I. 2001.

[10] R. Kornhuber and C. Schütte. Mit Zahlen rechnen - Lecture notes CoMa I. 2005.

[11] P. Kunkel and V. Mehrmann. Differential-Algebraic Equations: Analysis and Numerical
Solution. European Mathematical Society Publishing House, 2006.

[12] J. Ortega and W. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, 1972.

[13] J. Stoer and R. Bulirsch. Numerische Mathematik – eine Einführung, Band 1. & 2.
Springer, 2005.

93

	Stiff Differential Equations
	Stability of Solutions of ODEs
	Stability of Linear Recursions
	Preserving Stability: Linear Systems
	Collocation and Gauß Methods
	Dissipative Systems and A-stability of Gauß Methods
	Preserving Asymptotic Stability: Nonlinear Systems
	Algorithmic Aspects of Implicit RK's (Gauß Methods)
	Fixed point iteration
	Newton iteration and simplifications

	Linearly Implicit One-Step-Methods
	Extrapolation Methods
	Gradient Flows and Parabolic PDEs

	Differential Algebraic System
	Motivation
	Linear DAEs: Existence and Uniqueness
	Nonlinear Semi-explicit DAEs

	Hamiltonian Systems
	Energy and Symplecticity
	Symplectic Runge-Kutta-Methods

	Iterative Methods for Linear Systems
	Motivation (Why Iterative Solutions?)
	Linear Iterative Schemes
	Preconditioning and Linear Iterations
	Linear Descent Methods
	Nonlinear Descent Methods
	Gradient Methods (Steepest Descent)
	Conjugate Gradient Methods (CG Methods)
	Generalized minimal residual method (GMRes)

