Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 1 for the lecture
 Numerics II
 WS 2011/12

Due: till Thursday, 03. November 12 o'clock

Problem 1 (4 TP)
a) Rewrite the system

$$
\begin{aligned}
x_{1}^{\prime} & =\alpha x_{1}-\beta x_{2} \\
x_{2}^{\prime} & =\beta x_{1}+\alpha x_{2}
\end{aligned}
$$

as a scalar complex ode.
b) Derive conditions on α, β for stability and asymptotic stability of the fixed point $x^{*}=0$.
c) Discuss the phase diagrams of solutions in the stable, asymptoticly stable and unstable case.

Problem $2(3 \mathrm{TP}+1 \mathrm{PP})$
a) Check numerically whether $x^{*}=0$ is a stable fixed point of

$$
\begin{align*}
x_{1}^{\prime} & =x_{1}^{3}-x_{2} \tag{1}\\
x_{2}^{\prime} & =x_{1}
\end{align*}
$$

or not. Use the MATLAB-functions ode23 for approximation and odephase2 to visualize the phase diagram.
b) Show that the fixed point $x^{*}=0$ of (1) is not stable. Hint: Show blow-up of $V(x(t)), V(x)=x_{1}^{2}+x_{2}^{2}$ in finite time.

Problem 3 (2 TP)
Consider the following system of odes

$$
\begin{equation*}
x^{\prime}(t)=f(x(t)), \quad f(x)=\binom{1-\frac{1}{2}\left(x_{1}-x_{2}\right)^{2}}{\frac{1}{\sqrt{2}}\left(x_{1}+x_{2}\right)} \tag{2}
\end{equation*}
$$

a) Calculate all fixed points of (2).
b) Discuss the (asymptotic) stability of these fixed points.

Problem 4 (4 TP)
Consider the following initial value problem

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t), \quad x(0)=(-\varepsilon, 0)^{T} \tag{3}
\end{equation*}
$$

with the matrix

$$
A(t)=\left(\begin{array}{cc}
-1+\frac{3}{2} \cos (t)^{2} & 1-\frac{3}{2} \cos (t) \sin (t) \\
-1-\frac{3}{2} \cos (t) \sin (t) & -1+\frac{3}{2} \sin (t)^{2}
\end{array}\right)
$$

a) Calculate the eigenvalues of $A(t)$.
b) How does the spectral abscissa behave for varying t ? What do you expect concerning the (asymptotic) stability of solutions?
c) Determine the solution $x(t)$ of (3) explicitly. How does $x(t)$ behave for $t \rightarrow \infty$? (Hint: x is a product of trigonometric functions and the exponential function.)

