Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 11 for the lecture

Numerics II
WS 2011/12

Due: till Thursday, 26. January 12 o'clock

Problem 1 (4 TP)
Show that a convergent linear iteration converges linearly if the system matrix and the preconditioner of the iteration are s.p.d..

Problem 2 (4 TP)
Let $A \in \mathrm{R}^{n, n}$ be symmetric positive definite and $b \in \mathrm{R}^{n}$.
a) Show that there is a strictly convex functional $J: \mathrm{R}^{n} \rightarrow \mathrm{R}$ such that the solution of the linear system $A x=b$ is the minimizer of J.
b) Show that the Richardson iteration

$$
x_{k+1}=x_{k}+\omega\left(b-A x_{k}\right)
$$

with $\omega \in \mathrm{R}$ is equivalent to the explicit Euler method for the gradient flow associated with J.
c) Show that there is an $\omega>0$ such that the Richardson iteration converges to the solution of the linear system without using the results of Chapter 4 on numerical linear algebra.
d) Why is using an implicit Runge-Kutta method for the gradient flow not a good idea to solve the linear system?

Problem 3 (4 TP)
a) Show that the parallel directional correction method associated with the Euclidean unit vectors e_{i} is the Jacobi method.
b) Show that the successive directional correction method associated with the Euclidean unit vectors e_{i} is the Gauß-Seidel method.

Problem 4 (4 TP)
Assume that $A \in \mathrm{R}^{n, n}$ is s.p.d.. Prove the convergence of the gradient method

$$
x^{k+1}=x^{k}+\omega^{k} r^{k}, \quad \quad r^{k}=b-A x_{k}, \quad \quad \omega^{k}=\frac{\left\langle r^{k}, r^{k}\right\rangle}{\left\langle A r^{k}, r^{k}\right\rangle}
$$

