Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 2 for the lecture
 Numerics II
 WS 2011/12

Due: till Thursday, 10. November 12 o'clock

Problem 1 (2 TP)
Discuss the stability of the fixed point $x^{*}=0$ of the following odes
a)

$$
\begin{aligned}
& x_{1}^{\prime}= \\
& x_{2}^{\prime}= \\
& -\exp \left(x_{1}\right) x_{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
x_{1}^{\prime} & =\cos \left(x_{1}\right)-\exp \left(-x_{2}\right) \\
x_{2}^{\prime} & =x_{1} x_{2}
\end{aligned}
$$

Problem 2 (2 TP + 2 PP)
We consider the initial value problem

$$
\begin{equation*}
x^{\prime}(t)=\lambda|x(t)| x(t), \quad t>0, \quad x(0)=x_{0} . \tag{1}
\end{equation*}
$$

with the solution

$$
x(t)=\frac{x_{0}}{1-\lambda\left|x_{0}\right| t}
$$

and the fixed point $x^{*}=0$.
a) Is x^{*} stable or even asymptotically stable for $\lambda<0$?
b) Solve the problem (1) numerically for $\lambda=-1000$ using the explicit MATLAB-solver ode45.
c) Discuss whether (1) is a stiff or a non-stiff problem.

Problem 3 (2 TP)
a) Prove that $x_{k+1}=B x_{k}$ is stable, iff

$$
\sup _{k \in \mathrm{~N}}\left\|B^{k}\right\|<\infty
$$

b) Prove that $x_{k+1}=B x_{k}$ is asymptotically stable, iff

$$
\lim _{k \rightarrow \infty}\left\|B^{k}\right\|=0
$$

Problem 4 (3 TP)
a) Compute the stability function for the implicit midpoint rule.
b) Show that the stability function for the Runge-Kutta- 4 method is given by

$$
R(z)=1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}
$$

c) Show that the stability function for the implicit trapezoidal rule is given by

$$
R(z)=\frac{1+\frac{z}{2}}{1-\frac{z}{2}}
$$

